This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 821

Kyiv City MO Seniors 2003+ geometry, 2016.10.4

On the circle with diameter $AB$, the point $M$ was selected and fixed. Then the point ${{Q} _ {i}}$ is selected, for which the chord $M {{Q} _ {i}}$ intersects $AB$ at the point ${{K} _ {i}}$ and thus $ \angle M {{K} _ {i}} B <90 {} ^ \circ$. A chord that is perpendicular to $AB$ and passes through the point ${{K} _ {i}}$ intersects the line $B {{Q} _ {i}}$ at the point ${{P } _ {i}}$. Prove that the points ${{P} _ {i}}$ in all possible choices of the point ${{Q} _ {i}}$ lie on the same line. (Igor Nagel)

1984 All Soviet Union Mathematical Olympiad, 377

$n$ natural numbers ($n>3$) are written on the circumference. The relation of the two neighbours sum to the number itself is a whole number. Prove that the sum of those relations is a) not less than $2n$ b) less than $3n$

Kharkiv City MO Seniors - geometry, 2016.11.5

The circle $\omega$ passes through the vertices $B$ and $C$ of triangle $ABC$ and intersects its sides $AC,AB$ at points $A,E$, respectively. On the ray $BD$, a point $K$ such that $BK = AC$ is chosen , and on the ray $CE$, a point $L$ such that $CL = AB$ is chosen. Prove that the center $O$ of the circumscribed circle of the triangle $AKL$ lies on the circle $\omega$.

2004 Brazil Team Selection Test, Problem 1

Tags: circles , geometry
Let $\Gamma_1,\Gamma_2,\Gamma_3,\Gamma_4$ be distinct circles such that $\Gamma_1,\Gamma_3$ are externally tangent at $P$, and $\Gamma_2,\Gamma_4$ are externally tangent at the same point $P$. Suppose that $\Gamma_1$ and $\Gamma_2$; $\Gamma_2$ and $\Gamma_3$; $\Gamma_3$ and $\Gamma_4$; $\Gamma_4$ and $\Gamma_1$ meet at $A,B,C,D,$ respectively, and that all of these points are different from $P$. Prove that $$\frac{AB\cdot BC}{AD\cdot DC}=\frac{PB^2}{PD^2}$$

2019 Regional Olympiad of Mexico Northwest, 3

On a circle $\omega$ with center O and radius $r$ three different points $A, B$ and $C$ are chosen. Let $\omega_1$ and $\omega_2$ be the circles that pass through $A$ and are tangent to line $BC$ at points $B$ and $C$, respectively. (a) Show that the product of the areas of $\omega_1$ and $\omega_2$ is independent of the choice of the points $A, B$ and $C$. (b) Determine the minimum value that the sum of the areas of $\omega_1$ and $\omega_2$ can take and for what configurations of points $A, B$ and $C$ on $\omega$ this minimum value is reached.

2020 Ukrainian Geometry Olympiad - April, 3

The angle $POQ$ is given ($OP$ and $OQ$ are rays). Let $M$ and $N$ be points inside the angle $POQ$ such that $\angle POM = \angle QON$ and $\angle POM < \angle PON$. Consider two circles: one touches the rays $OP$ and $ON$, the other touches the rays $OM$ and $OQ$. Denote by $B$ and $C$ the points of their intersection. Prove that $\angle POC = \angle QOB$.

1966 IMO Longlists, 14

What is the maximal number of regions a circle can be divided in by segments joining $n$ points on the boundary of the circle ? [i]Posted already on the board I think...[/i]

2003 Korea Junior Math Olympiad, 3

Tags: circles , geometry , ratio
Consider a triangle $ABC$, inscribed in $O$ and $\angle A < \angle B$. Some point $P$ outside the circle satisfies $$\angle A=\angle PBA =180^{\circ}- \angle PCB$$ Let $D$ be the intersection of line $PB$ and $O$(different from $B$), and $Q$ the intersection of the tangent line of $O$ passing through $A$ and line $CD$. Show that $CQ : AB=AQ^2:AD^2$.

2004 Germany Team Selection Test, 1

Let $D_1$, $D_2$, ..., $D_n$ be closed discs in the plane. (A closed disc is the region limited by a circle, taken jointly with this circle.) Suppose that every point in the plane is contained in at most $2003$ discs $D_i$. Prove that there exists a disc $D_k$ which intersects at most $7\cdot 2003 - 1 = 14020$ other discs $D_i$.

1997 Croatia National Olympiad, Problem 3

Tags: geometry , circles
A chord divides the interior of a circle $k$ into two parts. Variable circles $k_1$ and $k_2$ are inscribed in these two parts, touching the chord at the same point. Show that the ratio of the radii of circles $k_1$ and $k_2$ is constant, i.e. independent of the tangency point with the chord.

Durer Math Competition CD Finals - geometry, 2014.D2

Tags: geometry , circles
On the inner surface of a fixed circle, rolls a wheel half the radius of the circle, without slipping. We marked a point red on the wheel. Prove that while the wheel makes a turn, the point moves on a line. [img]https://1.bp.blogspot.com/-PhgUWk0eU2c/X9j1gNJ7w3I/AAAAAAAAMzo/gP13TIZq7YsvNDBGVISkMQSdjwCgk_zwQCLcBGAsYHQ/s0/2014%2BDurer%2BD2.png[/img]

1998 Denmark MO - Mohr Contest, 1

In the figure shown, the small circles have radius $1$. Calculate the area of the gray part of the figure. [img]https://1.bp.blogspot.com/-oy-WirJ6u9o/XzcFc3roVDI/AAAAAAAAMX8/qxNy5I_0RWUOxl-ZE52fnrwo0v0T7If9QCLcBGAsYHQ/s0/1998%2BMohr%2Bp1.png[/img]

2024 New Zealand MO, 3

Tags: circles , geometry
Let $A,B,C,D,E$ be five different points on the circumference of a circle in that (cyclic) order. Let $F$ be the intersection of chords $BD$ and $CE$. Show that if $AB=AE=AF$ then lines $AF$ and $CD$ are perpendicular.

Indonesia MO Shortlist - geometry, g10

Given two circles with one of the centers of the circle is on the other circle. The two circles intersect at two points $C$ and $D$. The line through $D$ intersects the two circles again at $A$ and $ B$. Let $H$ be the midpoint of the arc $AC$ that does not contain $D$ and the segment $HD$ intersects circle that does not contain $H$ at point $E$. Show that $E$ is the center of the incircle of the triangle $ACD$.

1988 Greece National Olympiad, 3

Two circles $(O_1,R_1)$,$(O_2,R_2)$ lie each external to the other. Find : a) the minimum length of the segment connecting points of the circles b) the max length of the segment connecting points of the circles

1997 Estonia National Olympiad, 3

Tags: geometry , circles , radius
The points $A, B, M$ and $N$ are on a circle with center $O$ such that the radii $OA$ and $OB$ are perpendicular to each other, and $MN$ is parallel to $AB$ and intersects the radius $OA$ at $P$. Find the radius of the circle if $|MP|= 12$ and $|P N| = 2 \sqrt{14}$

2000 BAMO, 2

Let $ABC$ be a triangle with $D$ the midpoint of side $AB, E$ the midpoint of side $BC$, and $F$ the midpoint of side $AC$. Let $k_1$ be the circle passing through points $A, D$, and $F$, let $k_2$ be the circle passing through points $B, E$, and $D$, and let $k_3$ be the circle passing through $C, F$, and $E$. Prove that circles $k_1, k_2$, and $k_3$ intersect in a point.

2018 Dutch BxMO TST, 1

We have $1000$ balls in $40$ different colours, $25$ balls of each colour. Determine the smallest $n$ for which the following holds: if you place the $1000$ balls in a circle, in any arbitrary way, then there are always $n$ adjacent balls which have at least $20$ different colours.

Kyiv City MO Seniors 2003+ geometry, 2015.10.5

Circles ${{w} _ {1}}$ and ${{w} _ {2}}$ with centers at points ${{O} _ {1}}$ and ${{ O} _ {2}}$ intersect at points $A$ and $B$, respectively. Around the triangle ${{O} _ {1}} {{O} _ {2}} B$ circumscribe a circle $w$ centered at the point $O$, which intersects the circles ${{w } _ {1}}$ and ${{w} _ {2}}$ for the second time at points $K$ and $L$, respectively. The line $OA$ intersects the circles ${{w} _ {1}}$ and ${{w} _ {2}}$ at the points $M$ and $N$, respectively. The lines $MK$ and $NL$ intersect at the point $P$. Prove that the point $P$ lies on the circle $w$ and $PM = PN$. (Vadym Mitrofanov)

2002 IMO Shortlist, 8

Let two circles $S_{1}$ and $S_{2}$ meet at the points $A$ and $B$. A line through $A$ meets $S_{1}$ again at $C$ and $S_{2}$ again at $D$. Let $M$, $N$, $K$ be three points on the line segments $CD$, $BC$, $BD$ respectively, with $MN$ parallel to $BD$ and $MK$ parallel to $BC$. Let $E$ and $F$ be points on those arcs $BC$ of $S_{1}$ and $BD$ of $S_{2}$ respectively that do not contain $A$. Given that $EN$ is perpendicular to $BC$ and $FK$ is perpendicular to $BD$ prove that $\angle EMF=90^{\circ}$.

2004 India IMO Training Camp, 3

Every point with integer coordinates in the plane is the center of a disk with radius $1/1000$. (1) Prove that there exists an equilateral triangle whose vertices lie in different discs. (2) Prove that every equilateral triangle with vertices in different discs has side-length greater than $96$. [i]Radu Gologan, Romania[/i] [hide="Remark"] The "> 96" in [b](b)[/b] can be strengthened to "> 124". By the way, part [b](a)[/b] of this problem is the place where I used [url=http://mathlinks.ro/viewtopic.php?t=5537]the well-known "Dedekind" theorem[/url]. [/hide]

2011 Indonesia TST, 2

On a line $\ell$ there exists $3$ points $A, B$, and $C$ where $B$ is located between $A$ and $C$. Let $\Gamma_1, \Gamma_2, \Gamma_3$ be circles with $AC, AB$, and $BC$ as diameter respectively; $BD$ is a segment, perpendicular to $\ell$ with $D$ on $\Gamma_1$. Circles $\Gamma_4, \Gamma_5, \Gamma_6$ and $\Gamma_7$ satisfies the following conditions: $\bullet$ $\Gamma_4$ touches $\Gamma_1, \Gamma_2$, and$ BD$. $\bullet$ $\Gamma_5$ touches $\Gamma_1, \Gamma_3$, and $BD$. $\bullet$ $\Gamma_6$ touches $\Gamma_1$ internally, and touches $\Gamma_2$ and $\Gamma_3$ externally. $\bullet$ $\Gamma_7$ passes through $B$ and the tangent points of $\Gamma_2$ with $\Gamma_6$, and $\Gamma_3$ with $\Gamma_6$. Show that the circles $\Gamma_4, \Gamma_5$, and $\Gamma_7$ are congruent.

1977 Vietnam National Olympiad, 3

Into how many regions do $n$ circles divide the plane, if each pair of circles intersects in two points and no point lies on three circles?

2004 India IMO Training Camp, 3

Every point with integer coordinates in the plane is the center of a disk with radius $1/1000$. (1) Prove that there exists an equilateral triangle whose vertices lie in different discs. (2) Prove that every equilateral triangle with vertices in different discs has side-length greater than $96$. [i]Radu Gologan, Romania[/i] [hide="Remark"] The "> 96" in [b](b)[/b] can be strengthened to "> 124". By the way, part [b](a)[/b] of this problem is the place where I used [url=http://mathlinks.ro/viewtopic.php?t=5537]the well-known "Dedekind" theorem[/url]. [/hide]

1997 Estonia National Olympiad, 5

Six small circles of radius $1$ are drawn so that they are all tangent to a larger circle, and two of them are tangent to sides $BC$ and $AD$ of a rectangle $ABCD$ at their midpoints $K$ and $L$. Each of the remaining four small circles is tangent to two sides of the rectangle. The large circle is tangent to sides $AB$ and $CD$ of the rectangle and cuts the other two sides. Find the radius of the large circle. [img]https://cdn.artofproblemsolving.com/attachments/b/4/a134da78d709fe7162c48d6b5c40bd1016c355.png[/img]