This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2007 India National Olympiad, 6

If $ x$, $ y$, $ z$ are positive real numbers, prove that \[ \left(x \plus{} y \plus{} z\right)^2 \left(yz \plus{} zx \plus{} xy\right)^2 \leq 3\left(y^2 \plus{} yz \plus{} z^2\right)\left(z^2 \plus{} zx \plus{} x^2\right)\left(x^2 \plus{} xy \plus{} y^2\right) .\]

2001 China Team Selection Test, 2

In the equilateral $\bigtriangleup ABC$, $D$ is a point on side $BC$. $O_1$ and $I_1$ are the circumcenter and incenter of $\bigtriangleup ABD$ respectively, and $O_2$ and $I_2$ are the circumcenter and incenter of $\bigtriangleup ADC$ respectively. $O_1I_1$ intersects $O_2I_2$ at $P$. Find the locus of point $P$ as $D$ moves along $BC$.

2020 HK IMO Preliminary Selection Contest, 6

In $\Delta ABC$, $AB=6$, $BC=7$ and $CA=8$. Let $D$ be the mid-point of minor arc $AB$ on the circumcircle of $\Delta ABC$. Find $AD^2$

2010 Iran Team Selection Test, 5

Circles $W_1,W_2$ intersect at $P,K$. $XY$ is common tangent of two circles which is nearer to $P$ and $X$ is on $W_1$ and $Y$ is on $W_2$. $XP$ intersects $W_2$ for the second time in $C$ and $YP$ intersects $W_1$ in $B$. Let $A$ be intersection point of $BX$ and $CY$. Prove that if $Q$ is the second intersection point of circumcircles of $ABC$ and $AXY$ \[\angle QXA=\angle QKP\]

2004 Korea - Final Round, 2

An acute triangle $ABC$ has circumradius $R$, inradius $r$. $A$ is the biggest angle among $A,B,C$. Let $M$ be the midpoint of $BC$, and $X$ be the intersection of two lines that touches circumcircle of $ABC$ and goes through $B,C$ respectively. Prove the following inequality : $ \frac{r}{R} \geq \frac{AM}{AX}$.

2010 Bosnia And Herzegovina - Regional Olympiad, 2

Angle bisector from vertex $A$ of acute triangle $ABC$ intersects side $BC$ in point $D$, and circumcircle of $ABC$ in point $E$ (different from $A$). Let $F$ and $G$ be foots of perpendiculars from point $D$ to sides $AB$ and $AC$. Prove that area of quadrilateral $AEFG$ is equal to the area of triangle $ABC$

2024 Sharygin Geometry Olympiad, 19

A triangle $ABC$, its circumcircle, and its incenter $I$ are drawn on the plane. Construct the circumcenter of $ABC$ using only a ruler.

2007 Iran Team Selection Test, 2

Triangle $ABC$ is isosceles ($AB=AC$). From $A$, we draw a line $\ell$ parallel to $BC$. $P,Q$ are on perpendicular bisectors of $AB,AC$ such that $PQ\perp BC$. $M,N$ are points on $\ell$ such that angles $\angle APM$ and $\angle AQN$ are $\frac\pi2$. Prove that \[\frac{1}{AM}+\frac1{AN}\leq\frac2{AB}\]

2008 IMO Shortlist, 4

In an acute triangle $ ABC$ segments $ BE$ and $ CF$ are altitudes. Two circles passing through the point $ A$ and $ F$ and tangent to the line $ BC$ at the points $ P$ and $ Q$ so that $ B$ lies between $ C$ and $ Q$. Prove that lines $ PE$ and $ QF$ intersect on the circumcircle of triangle $ AEF$. [i]Proposed by Davood Vakili, Iran[/i]

1990 Chile National Olympiad, 6

Given a regular polygon with apothem $ A $ and circumradius $ R $. Find for a regular polygon of equal perimeter and with double number of sides, the apothem $ a $ and the circumcircle $ r $ in terms of $A,R$

2024 Israel TST, P1

Triangle $ABC$ with $\angle BAC=60^\circ$ is given. The circumcircle of $ABC$ is $\Omega$, and the orthocenter of $ABC$ is $H$. Let $S$ denote the midpoint of the arc $BC$ of $\Omega$ which doesn't contain $A$. Point $P$ was chosen on $\Omega$ so that $\angle HPS=90^\circ$. Prove that there exists a circle that goes through $P$ and $S$ and is tangent to lines $AB$, $AC$.

MathLinks Contest 7th, 1.1

Given is an acute triangle $ ABC$ and the points $ A_1,B_1,C_1$, that are the feet of its altitudes from $ A,B,C$ respectively. A circle passes through $ A_1$ and $ B_1$ and touches the smaller arc $ AB$ of the circumcircle of $ ABC$ in point $ C_2$. Points $ A_2$ and $ B_2$ are defined analogously. Prove that the lines $ A_1A_2$, $ B_1B_2$, $ C_1C_2$ have a common point, which lies on the Euler line of $ ABC$.

1996 IberoAmerican, 3

There are $n$ different points $A_1, \ldots , A_n$ in the plain and each point $A_i$ it is assigned a real number $\lambda_i$ distinct from zero in such way that $(\overline{A_i A_j})^2 = \lambda_i + \lambda_j$ for all the $i$,$j$ with $i\neq{}j$} Show that: (1) $n \leq 4$ (2) If $n=4$, then $\frac{1}{\lambda_1} + \frac{1}{\lambda_2} + \frac{1}{\lambda_3}+ \frac{1}{\lambda_4} = 0$

1998 China Team Selection Test, 1

In acute-angled $\bigtriangleup ABC$, $H$ is the orthocenter, $O$ is the circumcenter and $I$ is the incenter. Given that $\angle C > \angle B > \angle A$, prove that $I$ lies within $\bigtriangleup BOH$.

2019 Moroccan TST, 6

Let $ABC$ be a triangle. The tangent in $A$ of the circumcircle of $ABC$ cuts the line $(BC)$ in $X$. Let $A'$ be the symetric of $A$ by $X$ and $C'$ the symetric of $C$ by the line $(AX)$ Prove that the points $A, C', A'$ and $B$ are concyclic.

1994 AIME Problems, 15

Given a point $P$ on a triangular piece of paper $ABC,$ consider the creases that are formed in the paper when $A, B,$ and $C$ are folded onto $P.$ Let us call $P$ a fold point of $\triangle ABC$ if these creases, which number three unless $P$ is one of the vertices, do not intersect. Suppose that $AB=36, AC=72,$ and $\angle B=90^\circ.$ Then the area of the set of all fold points of $\triangle ABC$ can be written in the form $q\pi-r\sqrt{s},$ where $q, r,$ and $s$ are positive integers and $s$ is not divisible by the square of any prime. What is $q+r+s$?

2007 Romania Team Selection Test, 2

Let $ABC$ be a triangle, $E$ and $F$ the points where the incircle and $A$-excircle touch $AB$, and $D$ the point on $BC$ such that the triangles $ABD$ and $ACD$ have equal in-radii. The lines $DB$ and $DE$ intersect the circumcircle of triangle $ADF$ again in the points $X$ and $Y$. Prove that $XY\parallel AB$ if and only if $AB=AC$.

2006 China Team Selection Test, 1

The centre of the circumcircle of quadrilateral $ABCD$ is $O$ and $O$ is not on any of the sides of $ABCD$. $P=AC \cap BD$. The circumecentres of $\triangle{OAB}$, $\triangle{OBC}$, $\triangle{OCD}$ and $\triangle{ODA}$ are $O_1$, $O_2$, $O_3$ and $O_4$ respectively. Prove that $O_1O_3$, $O_2O_4$ and $OP$ are concurrent.

2012 Germany Team Selection Test, 2

Let $\Gamma$ be the circumcircle of isosceles triangle $ABC$ with vertex $C$. An arbitrary point $M$ is chosen on the segment $BC$ and point $N$ lies on the ray $AM$ with $M$ between $A,N$ such that $AN=AC$. The circumcircle of $CMN$ cuts $\Gamma$ in $P$ other than $C$ and $AB,CP$ intersect at $Q$. Prove that $\angle BMQ = \angle QMN.$

2013 Iran MO (3rd Round), 1

Let $ABCDE$ be a pentagon inscribe in a circle $(O)$. Let $ BE \cap AD = T$. Suppose the parallel line with $CD$ which passes through $T$ which cut $AB,CE$ at $X,Y$. If $\omega$ be the circumcircle of triangle $AXY$ then prove that $\omega$ is tangent to $(O)$.

2022 Bulgaria JBMO TST, 4

Let $ABC (AC < BC)$ be an acute triangle with circumcircle $k$ and midpoint $P$ of $AB$. The altitudes $AM$ and $BN$ ($M\in BC$, $N\in AC$) intersect at $H$. The point $E$ on $k$ is such that the segments $CE$ and $AB$ are perpendicular. The line $EP$ intersects $k$ again at point $K$ and the point $Q$ on $k$ is such that $KQ$ and $AB$ are parallel. The circumcircle of $AHB$ intersects the segment $CP$ at an interior point $R$. Prove that the points $C$, $M$, $R$, $H$, $N$ and $Q$ are concyclic.

2015 Sharygin Geometry Olympiad, P16

The diagonals of a convex quadrilateral divide it into four triangles. Restore the quadrilateral by the circumcenters of two adjacent triangles and the incenters of two mutually opposite triangles

2021 Thailand TST, 3

Let $P$ be a point on the circumcircle of acute triangle $ABC$. Let $D,E,F$ be the reflections of $P$ in the $A$-midline, $B$-midline, and $C$-midline. Let $\omega$ be the circumcircle of the triangle formed by the perpendicular bisectors of $AD, BE, CF$. Show that the circumcircles of $\triangle ADP, \triangle BEP, \triangle CFP,$ and $\omega$ share a common point.

Russian TST 2022, P3

Let $ABC$ be a triangle with circumcircle $\omega$ and let $\Omega_A$ be the $A$-excircle. Let $X$ and $Y$ be the intersection points of $\omega$ and $\Omega_A$. Let $P$ and $Q$ be the projections of $A$ onto the tangent lines to $\Omega_A$ at $X$ and $Y$ respectively. The tangent line at $P$ to the circumcircle of the triangle $APX$ intersects the tangent line at $Q$ to the circumcircle of the triangle $AQY$ at a point $R$. Prove that $\overline{AR} \perp \overline{BC}$.

2011 Canadian Students Math Olympiad, 1

In triangle $ABC$, $\angle{BAC}=60^\circ$ and the incircle of $ABC$ touches $AB$ and $AC$ at $P$ and $Q$, respectively. Lines $PC$ and $QB$ intersect at $G$. Let $R$ be the circumradius of $BGC$. Find the minimum value of $R/BC$. [i]Author: Alex Song[/i]