This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2015 IMO, 4

Triangle $ABC$ has circumcircle $\Omega$ and circumcenter $O$. A circle $\Gamma$ with center $A$ intersects the segment $BC$ at points $D$ and $E$, such that $B$, $D$, $E$, and $C$ are all different and lie on line $BC$ in this order. Let $F$ and $G$ be the points of intersection of $\Gamma$ and $\Omega$, such that $A$, $F$, $B$, $C$, and $G$ lie on $\Omega$ in this order. Let $K$ be the second point of intersection of the circumcircle of triangle $BDF$ and the segment $AB$. Let $L$ be the second point of intersection of the circumcircle of triangle $CGE$ and the segment $CA$. Suppose that the lines $FK$ and $GL$ are different and intersect at the point $X$. Prove that $X$ lies on the line $AO$. [i]Proposed by Greece[/i]

2013 ELMO Shortlist, 9

Let $ABCD$ be a cyclic quadrilateral inscribed in circle $\omega$ whose diagonals meet at $F$. Lines $AB$ and $CD$ meet at $E$. Segment $EF$ intersects $\omega$ at $X$. Lines $BX$ and $CD$ meet at $M$, and lines $CX$ and $AB$ meet at $N$. Prove that $MN$ and $BC$ concur with the tangent to $\omega$ at $X$. [i]Proposed by Allen Liu[/i]

2022 Greece Team Selection Test, 2

Consider triangle $ABC$ with $AB<AC<BC$, inscribed in triangle $\Gamma_1$ and the circles $\Gamma_2 (B,AC)$ and $\Gamma_2 (C,AB)$. A common point of circle $\Gamma_2$ and $\Gamma_3$ is point $E$, a common point of circle $\Gamma_1$ and $\Gamma_3$ is point $F$ and a common point of circle $\Gamma_1$ and $\Gamma_2$ is point $G$, where the points $E,F,G$ lie on the same semiplane defined by line $BC$, that point $A$ doesn't lie in. Prove that circumcenter of triangle $EFG$ lies on circle $\Gamma_1$. Note: By notation $\Gamma (K,R)$, we mean random circle $\Gamma$ has center $K$ and radius $R$.

2012 Junior Balkan Team Selection Tests - Romania, 4

The quadrilateral $ABCD$ is inscribed in a circle centered at $O$, and $\{P\} = AC \cap BD, \{Q\} = AB \cap CD$. Let $R$ be the second intersection point of the circumcircles of the triangles $ABP$ and $CDP$. a) Prove that the points $P, Q$, and $R$ are collinear. b) If $U$ and $V$ are the circumcenters of the triangles $ABP$, and $CDP$, respectively, prove that the points $U, R, O, V$ are concyclic.

2006 Taiwan National Olympiad, 1

$P,Q$ are two fixed points on a circle centered at $O$, and $M$ is an interior point of the circle that differs from $O$. $M,P,Q,O$ are concyclic. Prove that the bisector of $\angle PMQ$ is perpendicular to line $OM$.

Brazil L2 Finals (OBM) - geometry, 2006.5

Let $ABC$ be an acute triangle with orthocenter $H$. Let $M$, $N$ and $R$ be the midpoints of $AB$, $BC$ an $AH$, respectively. If $A\hat{B}C=70^\large\circ$, compute $M\hat{N}R$.

2019 Balkan MO Shortlist, G5

Let $ABC$ ($BC > AC$) be an acute triangle with circumcircle $k$ centered at $O$. The tangent to $k$ at $C$ intersects the line $AB$ at the point $D$. The circumcircles of triangles $BCD, OCD$ and $AOB$ intersect the ray $CA$ (beyond $A$) at the points $Q, P$ and $K$, respectively, such that $P \in (AK)$ and $K \in (PQ)$. The line $PD$ intersects the circumcircle of triangle $BKQ$ at the point $T$, so that $P$ and $T$ are in different halfplanes with respect to $BQ$. Prove that $TB = TQ$.