Found problems: 14842
2019 Brazil Team Selection Test, 2
We say that a distribution of students lined upen in collumns is $\textit{bacana}$ when there are no two friends in the same column. We know that all contestants in a math olympiad can be arranged in a $\textit{bacana}$ configuration with $n$ columns, and that this is impossible with $n-1$ columns. Show that we can choose competitors $M_1, M_2, \cdots, M_n$ in such a way that $M_i$ is on the $i$-th column, for each $i = 1, 2, 3, \ldots, n$ and $M_i$ is a friend of $M_{i+1}$ for each $i = 1, 2, \ldots, n - 1$.
2016 Czech-Polish-Slovak Match, 2
Let $m,n > 2$ be even integers. Consider a board of size $m \times n$ whose every cell is colored either black or white. The Guesser does not see the coloring of the board but may ask the Oracle some questions about it. In particular, she may inquire about two adjacent cells (sharing an edge) and the Oracle discloses whether the two adjacent cells have the same color or not. The Guesser eventually wants to find the parity of the number of adjacent cell-pairs whose colors are different. What is the minimum number of inquiries the Guesser needs to make so that she is guaranteed to find her answer?(Czech Republic)
2017 Mid-Michigan MO, 10-12
[b]p1.[/b] In the group of five people any subgroup of three persons contains at least two friends. Is it possible to divide these five people into two subgroups such that all members of any subgroup are friends?
[b]p2.[/b] Coefficients $a,b,c$ in expression $ax^2+bx+c$ are such that $b-c>a$ and $a \ne 0$. Is it true that equation $ax^2+bx+c=0$ always has two distinct real roots?
[b]p3.[/b] Point $D$ is a midpoint of the median $AF$ of triangle $ABC$. Line $CD$ intersects $AB$ at point $E$. Distances $|BD|=|BF|$. Show that $|AE|=|DE|$.
[b]p4.[/b] Real numbers $a,b$ satisfy inequality $a+b^5>ab^5+1$. Show that $a+b^7>ba^7+1$.
[b]p5.[/b] A positive number was rounded up to the integer and got the number that is bigger than the original one by $28\%$. Find the original number (find all solutions).
[b]p6.[/b] Divide a $5\times 5$ square along the sides of the cells into $8$ parts in such a way that all parts are different.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2024-IMOC, C4
The REAL country has $n$ islands, and there are $n-1$ two-way bridges connecting these islands. Any two islands can be reached through a series of bridges. Arctan, the king of the REAL country, found that it is too difficult to manage $n$ islands, so he wants to bomb some islands and their connecting bridges to divide the country into multiple small areas. Arctan wants the number of connected islands in each group is less than $\delta n$ after bombing these islands, and the island he bomb must be a connected area. Besides, Arctan wants the number of islands to be bombed to be as less as possible. Find all real numbers $\delta$ so that for any positive integer $n$ and the layout of the bridge, the method of bombing the islands is the only one.
[i]Proposed by chengbilly[/i]
2024 Al-Khwarizmi IJMO, 5
At a party, every guest is a friend of exactly fourteen other guests (not including him or her). Every two friends have exactly six other attending friends in common, whereas every pair of non-friends has only two friends in common. How many guests are at the party? Please explain your answer with proof.
[i]Proposed by Alexander Slavik, Czech Republic[/i]
2009 China Western Mathematical Olympiad, 2
Given an integer $n\ge\ 3$, find the least positive integer $k$, such that there exists a set $A$ with $k$ elements, and $n$ distinct reals $x_{1},x_{2},\ldots,x_{n}$ such that $x_{1}+x_{2}, x_{2}+x_{3},\ldots, x_{n-1}+x_{n}, x_{n}+x_{1}$ all belong to $A$.
2008 Korean National Olympiad, 4
We define $A, B, C$ as a [i]partition[/i] of $\mathbb{N}$ if $A,B,C$ satisfies the following.
(i) $A, B, C \not= \phi$ (ii) $A \cap B = B \cap C = C \cap A = \phi$ (iii) $A \cup B \cup C = \mathbb{N}$.
Prove that the partition of $\mathbb{N}$ satisfying the following does not exist.
(i) $\forall$ $a \in A, b \in B$, we have $a+b+2008 \in C$
(ii) $\forall$ $b \in B, c \in C$, we have $b+c+2008 \in A$
(iii) $\forall$ $c \in C, a \in A$, we have $c+a+2008 \in B$
1996 Tournament Of Towns, (497) 4
Is it possible to tile space using a combination of regular tetrahedra and regular octahedra?
(A Belov)
2014 Junior Balkan Team Selection Tests - Romania, 3
Consider six points in the interior of a square of side length $3$.
Prove that among the six points, there are two whose distance is less than $2$.
2010 All-Russian Olympiad, 2
There are $100$ random, distinct real numbers corresponding to $100$ points on a circle. Prove that you can always choose $4$ consecutive points in such a way that the sum of the two numbers corresponding to the points on the outside is always greater than the sum of the two numbers corresponding to the two points on the inside.
1990 Flanders Math Olympiad, 3
We form a decimal code of $21$ digits. the code may start with $0$. Determine the probability that the fragment $0123456789$ appears in the code.
2001 China Team Selection Test, 2.1
Let the vertex set \( V \) of a graph be partitioned into \( h \) parts \( (V = V_1 \cup V_2 \cup \cdots \cup V_h) \), with \(|V_1| = n_1, |V_2| = n_2, \ldots, |V_h| = n_h \). If there is an edge between any two vertices only when they belong to different parts, the graph is called a complete \( h \)-partite graph, denoted as \( k(n_1, n_2, \ldots, n_h) \). Let \( n \) and \( r \) be positive integers, \( n \geq 6 \), \( r \leq \frac{2}{3}n \). Consider the complete \( r + 1 \)-partite graph \( k\left(\underbrace{1, 1, \ldots, 1}_{r}, n - r\right) \).
Answer the following questions:
1. Find the maximum number of disjoint circles (i.e., circles with no common vertices) in this complete \( r + 1 \)-partite graph.
2. Given \( n \), for all \( r \leq \frac{2}{3}n \), find the maximum number of edges in a complete \( r + 1 \)-partite graph \( k(1, 1, \ldots, 1, n - r) \) where no more than one circle is disjoint.
2015 All-Russian Olympiad, 5
It is known that a cells square can be cut into $n$ equal figures of $k$ cells.
Prove that it is possible to cut it into $k$ equal figures of $n$ cells.
1983 IMO Longlists, 50
Is it possible to choose $1983$ distinct positive integers, all less than or equal to $10^5$, no three of which are consecutive terms of an arithmetic progression?
2012 Tournament of Towns, 6
We attempt to cover the plane with an infinite sequence of rectangles, overlapping allowed.
(a) Is the task always possible if the area of the $n$th rectangle is $n^2$ for each $n$?
(b) Is the task always possible if each rectangle is a square, and for any number $N$, there exist squares with total area greater than $N$?
2023 Indonesia TST, 2
Let $n > 3$ be a positive integer. Suppose that $n$ children are arranged in a circle, and $n$ coins are distributed between them (some children may have no coins). At every step, a child with at least 2 coins may give 1 coin to each of their immediate neighbors on the right and left. Determine all initial distributions of the coins from which it is possible that, after a finite number of steps, each child has exactly one coin.
2022 Junior Balkan Mathematical Olympiad, 4
We call an even positive integer $n$ [i]nice[/i] if the set $\{1, 2, \dots, n\}$ can be partitioned into $\frac{n}{2}$ two-element subsets, such that the sum of the elements in each subset is a power of $3$. For example, $6$ is nice, because the set $\{1, 2, 3, 4, 5, 6\}$ can be partitioned into subsets $\{1, 2\}$, $\{3, 6\}$, $\{4, 5\}$. Find the number of nice positive integers which are smaller than $3^{2022}$.
2006 Iran Team Selection Test, 1
We have $n$ points in the plane, no three on a line.
We call $k$ of them good if they form a convex polygon and there is no other point in the convex polygon.
Suppose that for a fixed $k$ the number of $k$ good points is $c_k$.
Show that the following sum is independent of the structure of points and only depends on $n$ :
\[ \sum_{i=3}^n (-1)^i c_i \]
2010 Saint Petersburg Mathematical Olympiad, 1
Chess king is standing in some square of chessboard. Every sunday it is moved to one square by diagonal, and every another day it is moved to one square by horisontal or vertical. What maximal numbers of moves can be made ?
2008 Tournament Of Towns, 6
Seated in a circle are $11$ wizards. A different positive integer not exceeding $1000$ is pasted onto the forehead of each. A wizard can see the numbers of the other $10$, but not his own. Simultaneously, each wizard puts up either his left hand or his right hand. Then each declares the number on his forehead at the same time. Is there a strategy on which the wizards can agree beforehand, which allows each of them to make the correct declaration?
2014 ELMO Shortlist, 5
Let $n$ be a positive integer. For any $k$, denote by $a_k$ the number of permutations of $\{1,2,\dots,n\}$ with exactly $k$ disjoint cycles. (For example, if $n=3$ then $a_2=3$ since $(1)(23)$, $(2)(31)$, $(3)(12)$ are the only such permutations.) Evaluate
\[ a_n n^n + a_{n-1} n^{n-1} + \dots + a_1 n. \][i]Proposed by Sammy Luo[/i]
2011 Switzerland - Final Round, 10
On each square of an $n\times n$-chessboard, there are two bugs. In a move, each bug moves to a (vertically of horizontally) adjacent square. Bugs from the same square always move to different squares. Determine the maximal number of free squares that can occur after one move.
[i](Swiss Mathematical Olympiad 2011, Final round, problem 10)[/i]
2015 Postal Coaching, 5
Prove that there exists a set of infinitely many positive integers such that the elements of no finite subset of this set add up to a perfect square.
2015 Danube Mathematical Competition, 2
Show that the edges of a connected simple (no loops and no multiple edges) finite graph can be oriented so that the number of edges leaving each vertex is even if and only if the total number of edges is even
2010 Tournament Of Towns, 2
At a circular track, $2n$ cyclists started from some point at the same time in the same direction with different constant speeds. If any two cyclists are at some point at the same time again, we say that they meet. No three or more of them have met at the same time. Prove that by the time every two cyclists have met at least once, each cyclist has had at least $n^2$ meetings.