Found problems: 14842
2020 SJMO, 2
Anthony writes the $(n+1)^2$ distinct positive integer divisors of $10^n$, each once, on a whiteboard. On a move, he may choose any two distinct numbers $a$ and $b$ on the board, erase them both, and write $\gcd(a, b)$ twice. Anthony keeps making moves until all of the numbers on the board are the same. Find the minimum possible number of moves Anthony could have made.
[i]Proposed by Andrew Wen[/i]
2016 Switzerland - Final Round, 4
There are $2016$ different points in the plane. Show that between these points at least $45$ different distances occur.
2010 Contests, 3
On a circular billiard table a ball rebounds from the rails as if the rail was the tangent to the circle at the point of impact.
A regular hexagon with its vertices on the circle is drawn on a circular billiard table.
A (point-shaped) ball is placed somewhere on the circumference of the hexagon, but not on one of its edges.
Describe a periodical track of this ball with exactly four points at the rails.
With how many different directions of impact can the ball be brought onto such a track?
2011 Tuymaada Olympiad, 3
Written in each square of an infinite chessboard is the minimum number of moves needed for a knight to reach that square from a given square $O$. A square is called [i]singular[/i] if $100$ is written in it and $101$ is written in all four squares sharing a side with it. How many singular squares are there?
2005 Romania Team Selection Test, 1
On a $2004 \times 2004$ chess table there are 2004 queens such that no two are attacking each other\footnote[1]{two queens attack each other if they lie on the same row, column or direction parallel with on of the main diagonals of the table}.
Prove that there exist two queens such that in the rectangle in which the center of the squares on which the queens lie are two opposite corners, has a semiperimeter of 2004.
1982 IMO Longlists, 55
Let $S$ be a square with sides length $100$. Let $L$ be a path within $S$ which does not meet itself and which is composed of line segments $A_0A_1,A_1A_2,A_2A_3,\ldots,A_{n-1}A_n$ with $A_0=A_n$. Suppose that for every point $P$ on the boundary of $S$ there is a point of $L$ at a distance from $P$ no greater than $\frac {1} {2}$. Prove that there are two points $X$ and $Y$ of $L$ such that the distance between $X$ and $Y$ is not greater than $1$ and the length of the part of $L$ which lies between $X$ and $Y$ is not smaller than $198$.
Kvant 2019, M2561
On the grid plane all possible broken lines with the following properties are constructed:
each of them starts at the point $(0, 0)$, has all its vertices at integer points, each linear segment goes either up or to the right along the grid lines. For each such broken line consider the corresponding [i]worm[/i], the subset of the plane consisting of all the cells that share at least one point with the broken line. Prove that the number of worms that can be divided into dominoes (rectangles $2\times 1$ and $1\times 2$) in exactly $n > 2$ different ways, is equal to the number of positive integers that are less than n and relatively prime to $n$.
(Ilke Chanakchi, Ralf Schiffler)
2018 Caucasus Mathematical Olympiad, 7
Given a positive integer $n>1$. In the cells of an $n\times n$ board, marbles are placed one by one. Initially there are no marbles on the board. A marble could be placed in a free cell neighboring (by side) with at least two cells which are still free. Find the greatest possible number of marbles that could be placed on the board according to these rules.
ABMC Speed Rounds, 2018
[i]25 problems for 30 minutes[/i]
[b]p1.[/b] Somya has a football game $4$ days from today. If the day before yesterday was Wednesday, what day of the week is the game?
[b]p2.[/b] Sammy writes the following equation: $$\frac{2 + 2}{8 + 8}=\frac{x}{8}.$$
What is the value of $x$ in Sammy's equation?
[b]p3.[/b] On $\pi$ day, Peter buys $7$ pies. The pies costed $\$3$, $\$1$, $\$4$, $\$1$, $\$5$, $\$9$, and $\$2$. What was the median price of Peter's $7$ pies in dollars?
[b]p4.[/b] Antonio draws a line on the coordinate plane. If the line passes through the points ($1, 3$) and ($-1,-1$), what is slope of the line?
[b]p5.[/b] Professor Varun has $25$ students in his science class. He divides his students into the maximum possible number of groups of $4$, but $x$ students are left over. What is $x$?
[b]p6.[/b] Evaluate the following: $$4 \times 5 \div 6 \times 3 \div \frac47$$
[b]p7.[/b] Jonny, a geometry expert, draws many rectangles with perimeter $16$. What is the area of the largest possible rectangle he can draw?
[b]p8.[/b] David always drives at $60$ miles per hour. Today, he begins his trip to MIT by driving $60$ miles. He stops to take a $20$ minute lunch break and then drives for another $30$ miles to reach the campus. What is the total time in minutes he spends getting to MIT?
[b]p9.[/b] Richard has $5$ hats: blue, green, orange, red, and purple. Richard also has 5 shirts of the same colors: blue, green, orange, red, and purple. If Richard needs a shirt and a hat of different colors, how many outts can he wear?
[b]p10.[/b] Poonam has $9$ numbers in her bag: $1, 2, 3, 4, 5, 6, 7, 8, 9$. Eric runs by with the number $36$. How many of Poonam's numbers evenly divide Eric's number?
[b]p11.[/b] Serena drives at $45$ miles per hour. If her car runs at $6$ miles per gallon, and each gallon of gas costs $2$ dollars, how many dollars does she spend on gas for a $135$ mile trip?
[b]p12.[/b] Grace is thinking of two integers. Emmie observes that the sum of the two numbers is $56$ but the difference of the two numbers is $30$. What is the sum of the squares of Grace's two numbers?
[b]p13.[/b] Chang stands at the point ($3,-3$). Fang stands at ($-3, 3$). Wang stands in-between Chang and Fang; Wang is twice as close to Fang as to Chang. What is the ordered pair that Wang stands at?
[b]p14.[/b] Nithin has a right triangle. The longest side has length $37$ inches. If one of the shorter sides has length $12$ inches, what is the perimeter of the triangle in inches?
[b]p15.[/b] Dora has $2$ red socks, $2$ blue socks, $2$ green socks, $2$ purple socks, $3$ black socks, and $4$ gray socks. After a long snowstorm, her family loses electricity. She picks socks one-by-one from the drawer in the dark. How many socks does she have to pick to guarantee a pair of socks that are the same color?
[b]p16.[/b] Justin selects a random positive $2$-digit integer. What is the probability that the sum of the two digits of Justin's number equals $11$?
[b]p17.[/b] Eddie correctly computes $1! + 2! + .. + 9! + 10!$. What is the remainder when Eddie's sum is divided by $80$?
[b]p18.[/b] $\vartriangle PQR$ is drawn such that the distance from $P$ to $\overline{QR}$ is $3$, the distance from $Q$ to $\overline{PR}$ is $4$, and the distance from $R$ to $\overline{PQ}$ is $5$. The angle bisector of $\angle PQR$ and the angle bisector of $\angle PRQ$ intersect at $I$. What is the distance from $I$ to $\overline{PR}$?
[b]p19.[/b] Maxwell graphs the quadrilateral $|x - 2| + |y + 2| = 6$. What is the area of the quadrilateral?
[b]p20.[/b] Uncle Gowri hits a speed bump on his way to the hospital. At the hospital, patients who get a rare disease are given the option to choose treatment $A$ or treatment $B$. Treatment $A$ will cure the disease $\frac34$ of the time, but since the treatment is more expensive, only $\frac{8}{25}$ of the patients will choose this treatment. Treatment $B$ will only cure the disease $\frac{1}{2}$ of the time, but since it is much more aordable, $\frac{17}{25}$ of the patients will end up selecting this treatment. Given that a patient was cured, what is the probability that the patient selected treatment $A$?
[b]p21.[/b] In convex quadrilateral $ABCD$, $AC = 28$ and $BD = 15$. Let $P, Q, R, S$ be the midpoints of $AB$, $BC$, $CD$ and $AD$ respectively. Compute $PR^2 + QS^2$.
[b]p22.[/b] Charlotte writes the polynomial $p(x) = x^{24} - 6x + 5$. Let its roots be $r_1$, $r_2$, $...$, $r_{24}$. Compute $r^{24}_1 +r^{24}_2 + r^{24}_3 + ... + r^{24}_24$.
[b]p23.[/b] In rectangle $ABCD$, $AB = 6$ and $BC = 4$. Let $E$ be a point on $CD$, and let $F$ be the point on $AB$ which lies on the bisector of $\angle BED$. If $FD^2 + EF^2 = 52$, what is the length of $BE$?
[b]p24.[/b] In $\vartriangle ABC$, the measure of $\angle A$ is $60^o$ and the measure of $\angle B$ is $45^o$. Let $O$ be the center of the circle that circumscribes $\vartriangle ABC$. Let $I$ be the center of the circle that is inscribed in $\vartriangle ABC$. Finally, let $H$ be the intersection of the $3$ altitudes of the triangle. What is the angle measure of $\angle OIH$ in degrees?
[b]p25.[/b] Kaitlyn fully expands the polynomial $(x^2 + x + 1)^{2018}$. How many of the coecients are not divisible by $3$?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
LMT Team Rounds 2021+, 3
Adamand Topher are playing a game in which each of them starts with $2$ pickles. Each turn, they flip a fair coin: if it lands heads, Topher takes $1$ pickle from Adam; if it lands tails, Adam takes $2$ pickles from Topher. (If Topher has only $1$ pickle left, Adam will just take it.) What’s the probability that Topher will have all $4$ pickles before Adam does?
1988 Romania Team Selection Test, 3
Consider all regular convex and star polygons inscribed in a given circle and having $n$ [i]sides[/i]. We call two such polygons to be equivalent if it is possible to obtain one from the other using a rotation about the center of the circle. How many classes of such polygons exist?
[i]Mircea Becheanu[/i]
2017 CHMMC (Fall), Individual
[b]p1.[/b] A dog on a $10$ meter long leash is tied to a $10$ meter long, infinitely thin section of fence. What is the minimum area over which the dog will be able to roam freely on the leash, given that we can fix the position of the leash anywhere on the fence?
[b]p2.[/b] Suppose that the equation $$\begin{tabular}{cccccc}
&\underline{C} &\underline{H} &\underline{M}& \underline{M}& \underline{C}\\
+& &\underline{H}& \underline{M}& \underline{M} & \underline{T}\\
\hline
&\underline{P} &\underline{U} &\underline{M} &\underline{A} &\underline{C}\\
\end{tabular}$$
holds true, where each letter represents a single nonnegative digit, and distinct letters represent different digits (so that $\underline{C}\, \underline{H}\, \underline{ M}\, \underline{ M}\, \underline{ C}$ and $ \underline{P}\, \underline{U}\, \underline{M}\, \underline{A}\, \underline{C}$ are both five digit positive integers, and the number $\underline{H }\, \underline{M}\, \underline{M}\, \underline{T}$ is a four digit positive integer). What is the largest possible value of the five digit positive integer$\underline{C}\, \underline{H}\, \underline{ M}\, \underline{ M}\, \underline{ C}$ ?
[b]p3.[/b] Square $ABCD$ has side length $4$, and $E$ is a point on segment $BC$ such that $CE = 1$. Let $C_1$ be the circle tangent to segments $AB$, $BE$, and $EA$, and $C_2$ be the circle tangent to segments $CD$, $DA$, and $AE$. What is the sum of the radii of circles $C_1$ and $C_2$?
[b]p4.[/b] A finite set $S$ of points in the plane is called tri-separable if for every subset $A \subseteq S$ of the points in the given set, we can find a triangle $T$ such that
(i) every point of $A$ is inside $T$ , and
(ii) every point of $S$ that is not in $A$ is outside$ T$ .
What is the smallest positive integer $n$ such that no set of $n$ distinct points is tri-separable?
[b]p5.[/b] The unit $100$-dimensional hypercube $H$ is the set of points $(x_1, x_2,..., x_{100})$ in $R^{100}$ such that $x_i \in \{0, 1\}$ for $i = 1$, $2$, $...$, $100$. We say that the center of $H$ is the point
$$\left( \frac12,\frac12, ..., \frac12 \right)$$
in $R^{100}$, all of whose coordinates are equal to $1/2$.
For any point $P \in R^{100}$ and positive real number $r$, the hypersphere centered at $P$ with radius $r$ is defined to be the set of all points in $R^{100}$ that are a distance $r$ away from $P$. Suppose we place hyperspheres of radius $1/2$ at each of the vertices of the $100$-dimensional unit hypercube $H$. What is the smallest real number $R$, such that a hypersphere of radius $R$ placed at the center of $H$ will intersect the hyperspheres at the corners of $H$?
[b]p6.[/b] Greg has a $9\times 9$ grid of unit squares. In each square of the grid, he writes down a single nonzero digit. Let $N$ be the number of ways Greg can write down these digits, so that each of the nine nine-digit numbers formed by the rows of the grid (reading the digits in a row left to right) and each of the nine nine-digit numbers formed by the columns (reading the digits in a column top to bottom) are multiples of $3$. What is the number of positive integer divisors of $N$?
[b]p7.[/b] Find the largest positive integer $n$ for which there exists positive integers $x$, $y$, and $z$ satisfying
$$n \cdot gcd(x, y, z) = gcd(x + 2y, y + 2z, z + 2x).$$
[b]p8.[/b] Suppose $ABCDEFGH$ is a cube of side length $1$, one of whose faces is the unit square $ABCD$. Point $X$ is the center of square $ABCD$, and $P$ and $Q$ are two other points allowed to range on the surface of cube $ABCDEFHG$. Find the largest possible volume of tetrahedron $AXPQ$.
[b]p9.[/b] Deep writes down the numbers $1, 2, 3, ... , 8$ on a blackboard. Each minute after writing down the numbers, he uniformly at random picks some number $m$ written on the blackboard, erases that number from the blackboard, and increases the values of all the other numbers on the blackboard by $m$. After seven minutes, Deep is left with only one number on the black board. What is the expected value of the number Deep ends up with after seven minutes?
[b]p10.[/b] Find the number of ordered tuples $(x_1, x_2, x_3, x_4, x_5)$ of positive integers such that $x_k \le 6$ for each index $k = 1$, $2$, $... $,$ 5$, and the sum $$x_1 + x_2 +... + x_5$$ is $1$ more than an integer multiple of $7$.
[b]p11.[/b] The equation $$\left( x- \sqrt[3]{13}\right)\left( x- \sqrt[3]{53}\right)\left( x- \sqrt[3]{103}\right)=\frac13$$ has three distinct real solutions $r$, $s$, and $t$ for $x$. Calculate the value of $$r^3 + s^3 + t^3.$$
[b]p12.[/b] Suppose $a$, $b$, and $c$ are real numbers such that
$$\frac{ac}{a + b}+\frac{ba}{b + c}+\frac{cb}{c + a}= -9$$
and
$$\frac{bc}{a + b}+\frac{ca}{b+c}+\frac{ab}{c + a}= 10.$$
Compute the value of
$$\frac{b}{a + b}+\frac{c}{b + c}+\frac{a}{c + a}.$$
[b]p13.[/b] The complex numbers $w$ and $z$ satisfy the equations $|w| = 5$, $|z| = 13$, and $$52w - 20z = 3(4 + 7i).$$ Find the value of the product $wz$.
[b]p14.[/b] For $i = 1, 2, 3, 4$, we choose a real number $x_i$ uniformly at random from the closed interval $[0, i]$. What is the probability that $x_1 < x_2 < x_3 < x_4$ ?
[b]p15.[/b] The terms of the infinite sequence of rational numbers $a_0$, $a_1$, $a_2$, $...$ satisfy the equation $$a_{n+1} + a_{n-2} = a_na_{n-1}$$ for all integers $n\ge 2$. Moreover, the values of the initial terms of the sequence are $a_0 =\frac52$, $a_1 = 2$ and} $a_2 =\frac52.$ Call a nonnegative integer $m$ lucky if when we write $a_m =\frac{p}{q}$ for some relatively prime positive integers $p$ and $q$, the integer $p + q$ is divisible by $13$. What is the $101^{st}$ smallest lucky number?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2014 Contests, 3
Suppose we have a $8\times8$ chessboard. Each edge have a number, corresponding to number of possibilities of dividing this chessboard into $1\times2$ domino pieces, such that this edge is part of this division. Find out the last digit of the sum of all these numbers.
(Day 1, 3rd problem
author: Michal Rolínek)
2016 Croatia Team Selection Test, Problem 2
Let $N$ be a positive integer. Consider a $N \times N$ array of square unit cells. Two corner cells that lie on the same longest diagonal are colored black, and the rest of the array is white. A [i]move[/i] consists of choosing a row or a column and changing the color of every cell in the chosen row or column.
What is the minimal number of additional cells that one has to color black such that, after a finite number of moves, a completely black board can be reached?
2005 May Olympiad, 5
The enemy ship has landed on a $9\times 9$ board that covers exactly $5$ squares of the board, like this:
[img]https://cdn.artofproblemsolving.com/attachments/2/4/ae5aa95f5bb5e113fd5e25931a2bf8eb872dbe.png[/img]
The ship is invisible. Each defensive missile covers exactly one square, and destroys the ship if it hits one of the $5$ squares that it occupies. Determine the minimum number of missiles needed to destroy the enemy ship with certainty .
2022 Auckland Mathematical Olympiad, 12
There are $11$ empty boxes. In one move, a player can put one coin in each of some $10$ boxes. Two people play, taking turns. The winner is the player after whose move in one of the boxes there will be $21$ coins. Who has a winning strategy?
2017-IMOC, C4
There are $3N+1$ students with different heights line up for asking questions. Prove that the teacher can drive $2N$ students away such that the remain students satisfies: No one has neighbors whose heights are consecutive.
2017 China Team Selection Test, 2
$2017$ engineers attend a conference. Any two engineers if they converse, converse with each other in either Chinese or English. No two engineers converse with each other more than once. It is known that within any four engineers, there was an even number of conversations and furthermore within this even number of conversations:
i) At least one conversation is in Chinese.
ii) Either no conversations are in English or the number of English conversations is at least that of Chinese conversations.
Show that there exists $673$ engineers such that any two of them conversed with each other in Chinese.
2009 Turkey MO (2nd round), 3
[i]Alice[/i], who works for the [i]Graph County Electric Works[/i], is commissioned to wire the newly erected utility poles in $k$ days. Each day she either chooses a pole and runs wires from it to as many poles as she wishes, or chooses at most $17$ pairs of poles and runs wires between each pair. [i]Bob[/i], who works for the [i]Graph County Paint Works[/i], claims that, no matter how many poles there are and how [i]Alice[/i] connects them, all the poles can be painted using not more than $2009$ colors in such a way that no pair of poles connected by a wire is the same color. Determine the greatest value of $k$ for which [i]Bob[/i]'s claim is valid.
Kvant 2023, M2749
We have $n{}$ coins, one of which is fake, which differs in weight from the real ones and a two-pan scale which works correctly if the weights on the pans are different, but can show any outcome if the weights on the pans are equal. For what $n{}$ can we determine which coin is fake and whether it is lighter or heavier than the real coins, in at most $k{}$ weightings?
[i]Proposed by A. Zaslavsky[/i]
2019 NMTC Junior, 8
A circular disc is divided into $12$ equal sectors and one of $6$ different colours is used to colour each sector. No two adjacent sectors can have the same colour. Find the number of such distinct colorings possible.
2005 China Girls Math Olympiad, 4
Determine all positive real numbers $ a$ such that there exists a positive integer $ n$ and sets $ A_1, A_2, \ldots, A_n$ satisfying the following conditions:
(1) every set $ A_i$ has infinitely many elements;
(2) every pair of distinct sets $ A_i$ and $ A_j$ do not share any common element
(3) the union of sets $ A_1, A_2, \ldots, A_n$ is the set of all integers;
(4) for every set $ A_i,$ the positive difference of any pair of elements in $ A_i$ is at least $ a^i.$
2021 Indonesia TST, N
For every positive integer $n$, let $p(n)$ denote the number of sets $\{x_1, x_2, \dots, x_k\}$ of integers with $x_1 > x_2 > \dots > x_k > 0$ and $n = x_1 + x_3 + x_5 + \dots$ (the right hand side here means the sum of all odd-indexed elements). As an example, $p(6) = 11$ because all satisfying sets are as follows: $$\{6\}, \{6, 5\}, \{6, 4\}, \{6, 3\}, \{6, 2\}, \{6, 1\}, \{5, 4, 1\}, \{5, 3, 1\}, \{5, 2, 1\}, \{4, 3, 2\}, \{4, 3, 2, 1\}.$$ Show that $p(n)$ equals to the number of partitions of $n$ for every positive integer $n$.
2015 MMATHS, 1
Each lattice point of the plane is labeled by a positive integer. Each of these numbers is the arithmetic mean of its four neighbors (above, below, left, right). Show that all the numbers are equal.
LMT Speed Rounds, 2021 F
[b]p1.[/b] Compute $21 \cdot 21 - 20 \cdot 20$.
[b]p2.[/b] A square has side length $2$. If the square is scaled by a factor of $n$, the perimeter of the new square is equal to the area of the original square. Find $10n$.
[b]p3.[/b] Kevin has $2$ red marbles and $2$ blue marbles in a box. He randomly grabs two marbles. The probability that they are the same color can be expressed as $\frac{a}{b}$ for relatively prime integers $a$ and $b$. Find $a +b$.
[b]p4.[/b] In a classroom, if the teacher splits the students into groups of $3$ or $4$, there is one student left out. If the students formgroups of $5$, every student is in a group. What is the fewest possible number of students in this classroom?
[b]p5.[/b] Find the sum of all positive integer values of $x$ such that $\lfloor \sqrt{x!} \rfloor = x$.
[b]p6.[/b] Find the number of positive integer factors of $2021^{(2^0+2^1)} \cdot 1202^{(1^2+0^2)}$.
[b]p7.[/b] Let $n$ be the number of days over a $13$ year span. Find the difference between the greatest and least possible values of $n$. Note: All years divisible by $4$ are leap years unless they are divisible by 100 but not $400$. For example, $2000$ and $2004$ are leap years, but $1900$ is not.
[b]p8.[/b] In isosceles $\vartriangle ABC$, $AB = AC$, and $\angle ABC = 72^o$. The bisector of $\angle ABC$ intersects $AC$ at $D$. Given that $BC = 30$, find $AD$.
[b]p9.[/b] For an arbitrary positive value of $x$, let $h$ be the area of a regular hexagon with side length $x$ and let $s$ be the area of a square with side length $x$. Find the value of $\left \lfloor \frac{10h}{s} \right \rfloor$.
[b]p10.[/b] There is a half-full tub of water with a base of $4$ inches by $5$ inches and a height of $8$ inches. When an infinitely long stick with base $1$ inch by $1$ inch is inserted vertically into the bottom of the tub, the number of inches the water level rises by can be written as $\frac{a}{b}$ where $a$ and $b$ are relatively prime positive integers. Find $a +b$.
[b]p11.[/b] Find the sum of all $4$-digit numbers with digits that are a permutation of the digits in $2021$. Note that positive integers cannot have first digit $0$.
[b]p12.[/b] A $10$-digit base $8$ integer is chosen at random. The probability that it has $30$ digits when written in base $2$ can be expressed as $\frac{a}{b}$, where $a$ and $b$ are relatively prime positive integers. Find $a +b$.
[b]p13.[/b] Call a natural number sus if it can be expressed as $k^2 +k +1$ for some positive integer $k$. Find the sum of all sus integers less than $2021$.
[b]p14.[/b] In isosceles triangle $ABC$, $D$ is the intersection of $AB$ and the perpendicular to $BC$ through $C$. Given that $CD = 5$ and $AB = BC = 1$, find $\sec^2 \angle ABC$.
[b]p15.[/b] Every so often, the minute and hour hands of a clock point in the same direction. The second time this happens after 1:00 is a b minutes later, where a and b are relatively prime positive integers. Find a +b.
[b]p16.[/b] The $999$-digit number $N = 123123...123$ is composed of $333$ iterations of the number $123$. Find the least nonnegative integerm such that $N +m$ is a multiple of $101$.
[b]p17.[/b] The sum of the reciprocals of the divisors of $2520$ can be written as $\frac{a}{b}$, where $a$ and $b$ are relatively prime positive integers. Find $a +b$.
[b]p18.[/b] Duncan, Paul, and $6$ Atreides guards are boarding three helicopters. Duncan, Paul, and the guards enter the helicopters at random, with the condition that Duncan and Paul do not enter the same helicopter. Note that not all helicoptersmust be occupied. The probability that Paul has more guards with him in his helicopter than Duncan does can be written as $\frac{a}{b}$ where $a$ and $b$ are relatively prime positive integers. Find $a +b$.
[b]p19.[/b] Let the minimum possible distance from the origin to the parabola $y = x^2 -2021$ be $d$. The value of d2 can be expressed as $\frac{a}{b}$ where $a$ and $b$ are relatively prime positive integers. Find $a +b$.
[b]p20.[/b] In quadrilateral $ABCD$ with interior point $E$ and area $49 \sqrt3$, $\frac{BE}{CE}= 2 \sqrt3$, $\angle ABC = \angle BCD = 90^o$, and $\vartriangle ABC \sim \vartriangle BCD \sim \vartriangle BEC$. The length of $AD$ can be expressed aspn where $n$ is a positive integer. Find $n$.
[b]p21.[/b] Find the value of
$$\sum^{\infty}_{i=1}\left( \frac{i^2}{2^{i-1}}+\frac{i^2}{2^{i}}+\frac{i^2}{2^{i+1}}\right)=\left( \frac{1^2}{2^{0}}+\frac{1^2}{2^{1}}+\frac{1^2}{2^{2}}\right)+\left( \frac{2^2}{2^{1}}+\frac{2^2}{2^{2}}+\frac{2^2}{2^{3}}\right)+\left( \frac{3^2}{2^{2}}+\frac{2^2}{2^{3}}+\frac{2^2}{2^{4}}\right)+...$$
[b]p22.[/b] Five not necessarily distinct digits are randomly chosen in some order. Let the probability that they form a nondecreasing sequence be $\frac{a}{b}$ , where $a$ and $b$ are relatively prime positive integers. Find the remainder when $a +b$ is divided by$ 1000$.
[b]p23.[/b] Real numbers $a$, $b$, $c$, and d satisfy $$ac -bd = 33$$
$$ad +bc = 56.$$ Given that $a^2 +b^2 = 5$, find the sum of all possible values of $c^2 +d^2$.
[b]p24.[/b] Jeff has a fair tetrahedral die with sides labeled $0$, $1$, $2$, and $3$. He continuously rolls the die and record the numbers rolled in that order. For example, if he rolls a $1$, then rolls a $2$, and then rolls a $3$, he writes down $123$. He keeps rolling the die until he writes the substring $2021$. What is the expected number of times he rolls the die?
[b]p25.[/b] In triangle $ABC$, $BC = 2\sqrt3$, and $AB = AC = 4\sqrt3$. Circle $\omega$ with center $O$ is tangent to segment $AB$ at $T$ , and $\omega$ is also tangent to ray $CB$ past $B$ at another point. Points $O, T$ , and $C$ are collinear. Let $r$ be the radius of $\omega$. Given that $r^2 = \frac{a}{b}$ where $a$ and $b$ are relatively prime positive integers, find $a +b$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].