This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2021 IMO Shortlist, N4

Let $r>1$ be a rational number. Alice plays a solitaire game on a number line. Initially there is a red bead at $0$ and a blue bead at $1$. In a move, Alice chooses one of the beads and an integer $k \in \mathbb{Z}$. If the chosen bead is at $x$, and the other bead is at $y$, then the bead at $x$ is moved to the point $x'$ satisfying $x'-y=r^k(x-y)$. Find all $r$ for which Alice can move the red bead to $1$ in at most $2021$ moves.

Russian TST 2017, P1

The leader of an IMO team chooses positive integers $n$ and $k$ with $n > k$, and announces them to the deputy leader and a contestant. The leader then secretly tells the deputy leader an $n$-digit binary string, and the deputy leader writes down all $n$-digit binary strings which differ from the leader’s in exactly $k$ positions. (For example, if $n = 3$ and $k = 1$, and if the leader chooses $101$, the deputy leader would write down $001, 111$ and $100$.) The contestant is allowed to look at the strings written by the deputy leader and guess the leader’s string. What is the minimum number of guesses (in terms of $n$ and $k$) needed to guarantee the correct answer?

1993 Vietnam Team Selection Test, 1

We call a rectangle of size $2 \times 3$ (or $3 \times 2$) without one cell in corner a $P$-rectangle. We call a rectangle of size $2 \times 3$ (or $3 \times 2$) without two cells in opposite (under center of rectangle) corners a $S$-rectangle. Using some squares of size $2 \times 2$, some $P$-rectangles and some $S$-rectangles, one form one rectangle of size $1993 \times 2000$ (figures don’t overlap each other). Let $s$ denote the sum of numbers of squares and $S$-rectangles used in such tiling. Find the maximal value of $s$.

2020 Taiwan TST Round 2, 3

There are $N$ acute triangles on the plane. Their vertices are all integer points, their areas are all equal to $2^{2020}$, but no two of them are congruent. Find the maximum possible value of $N$. Note: $(x,y)$ is an integer point if and only if $x$ and $y$ are both integers. [i]Proposed by CSJL[/i]

2007 Indonesia TST, 3

On each vertex of a regular $ n\minus{}$gon there was a crow. Call this as initial configuration. At a signal, they all flew by and after a while, those $ n$ crows came back to the $ n\minus{}$gon, one crow for each vertex. Call this as final configuration. Determine all $ n$ such that: there are always three crows such that the triangle they formed in the initial configuration and the triangle they formed in the final configuration are both right-angled triangle.

2016 Argentina National Olympiad Level 2, 1

In the cells of a $1 \times 100$ board, Julián writes all the integers from $1$ to $100$ (inclusive) in any order of his choice, without repeating numbers. For every three consecutive cells on the board, the cell containing the middle value of the three numbers in those cells is marked. For example, if the three numbers are $7$, $99$ and $22$, then the cell with $22$ is marked. Let $S$ be the sum of all the numbers in the marked cells. Determine the minimum value that $S$ can take. [b]Note:[/b] Each marked number contributes to the sum $S$ exactly once, but it can be marked multiple times.

2017 Iberoamerican, 5

Given a positive integer $n$, all of its positive integer divisors are written on a board. Two players $A$ and $B$ play the following game: Each turn, each player colors one of these divisors either red or blue. They may choose whichever color they wish, but they may only color numbers that have not been colored before. The game ends once every number has been colored. $A$ wins if the product of all of the red numbers is a perfect square, or if no number has been colored red, $B$ wins otherwise. If $A$ goes first, determine who has a winning strategy for each $n$.

2024 China Western Mathematical Olympiad, 6

Alice and Bob now play a magic show. There are $101 $ different hats lie on the table and they form a circle. Firstly, Bob choose a positive integer $n$(Alice doesn’t know it). Then Bob puts a rabbit under one of the hats and Alice doesn’t know which hat contains the rabbit. Each time, she can choose a hat and see whether the rabbit is under the hat. If not, then Bob will move the rabbit from the current hat to the $n$th hat in a clockwise direction. They will repeat these steps until Alice find the rabbit. Prove that Alice can find the rabbit in $201$ steps.

2024 Switzerland Team Selection Test, 6

Let $n\geqslant 2$ be a positive integer. Paul has a $1\times n^2$ rectangular strip consisting of $n^2$ unit squares, where the $i^{\text{th}}$ square is labelled with $i$ for all $1\leqslant i\leqslant n^2$. He wishes to cut the strip into several pieces, where each piece consists of a number of consecutive unit squares, and then [i]translate[/i] (without rotating or flipping) the pieces to obtain an $n\times n$ square satisfying the following property: if the unit square in the $i^{\text{th}}$ row and $j^{\text{th}}$ column is labelled with $a_{ij}$, then $a_{ij}-(i+j-1)$ is divisible by $n$. Determine the smallest number of pieces Paul needs to make in order to accomplish this.

2012 Korea - Final Round, 3

Let $M$ be the set of positive integers which do not have a prime divisor greater than 3. For any infinite family of subsets of $M$, say $A_1,A_2,\ldots $, prove that there exist $i\ne j$ such that for each $x\in A_i$ there exists some $y\in A_j $ such that $y\mid x$.

Russian TST 2021, P1

A machine accepts coins of $k{}$ values $1 = a_1 <\cdots < a_k$ and sells $k{}$ different drinks with prices $0<b_1 < \cdots < b_k$. It is known that if we start inserting coins into the machine in an arbitrary way, sooner or later the total value of the coins will be equal to the price of a drink. For which sets of numbers $(a_1,\ldots,a_k;b_1,\ldots,b_k)$ does this property hold?

1994 All-Russian Olympiad Regional Round, 9.4

On the world conference of parties of liars and truth-lovers there were $32$ participants which were sitting in four rows with $8$ chairs each. During a break each participant claimed that among his neighbors (by row or column) there are members of both parties. It is known that liars always lie, whereas truth-lovers always tell truth. What is the smallest number of liars at the conference for which this situation is possible?

2019 Federal Competition For Advanced Students, P1, 3

Let $n\ge 2$ be an integer. Ariane and Bérénice play a game on the number of the residue classes modulo $n$. At the beginning there is the residue class $1$ on each piece of paper. It is the turn of the player whose turn it is to replace the current residue class $x$ with either $x + 1$ or by $2x$. The two players take turns, with Ariane starting. Ariane wins if the residue class $0$ is reached during the game. Bérénice wins if she can prevent that permanently. Depending on $n$, determine which of the two has a winning strategy.

2016 PUMaC Team, 5

An alphabet $A$ has $16$ letters. A message is written using the alphabet and, to encrypt the message, a permutation $f : A \to A$ is applied to each letter. Let $n(f)$ be the smallest positive integer $k$ such that every message $m$, encrypted by applying $f$ to the message $k$ times, produces $m$. Compute the largest possible value of $n(f)$.

2005 MOP Homework, 4

Consider an infinite array of integers. Assume that each integer is equal to the sum of the integers immediately above and immediately to the left. Assume that there exists a row $R_0$ such that all the number in the row are positive. Denote by $R_1$ the row below row $R_0$, by $R_2$ the row below row $R_1$, and so on. Show that for each positive integer $n$, row $R_n$ cannot contain more than $n$ zeros.

2024 Kyiv City MO Round 1, Problem 2

Is it possible to write the numbers from $1$ to $100$ in the cells of a of a $10 \times 10$ square so that: 1. Each cell contains exactly one number; 2. Each number is written exactly once; 3. For any two cells that are symmetrical with respect to any of the perpendicular bisectors of sides of the original $10 \times 10$ square, the numbers in them must have the same parity. The figure below shows examples of such pairs of cells, in which the numbers must have the same parity. [img]https://i.ibb.co/b3P8t36/Kyiv-MO-2024-7-2.png[/img] [i]Proposed by Mykhailo Shtandenko[/i]

2016 Dutch IMO TST, 1

Let $n$ be a positive integer. In a village, $n$ boys and $n$ girls are living. For the yearly ball, $n$ dancing couples need to be formed, each of which consists of one boy and one girl. Every girl submits a list, which consists of the name of the boy with whom she wants to dance the most, together with zero or more names of other boys with whom she wants to dance. It turns out that $n$ dancing couples can be formed in such a way that every girl is paired with a boy who is on her list. Show that it is possible to form $n$ dancing couples in such a way that every girl is paired with a boy who is on her list, and at least one girl is paired with the boy with whom she wants to dance the most.

2007 Indonesia Juniors, day 2

p1. Four kite-shaped shapes as shown below ($a > b$, $a$ and $b$ are natural numbers less than $10$) arranged in such a way so that it forms a square with holes in the middle. The square hole in the middle has a perimeter of $16$ units of length. What is the possible perimeter of the outermost square formed if it is also known that $a$ and $b$ are numbers coprime? [img]https://cdn.artofproblemsolving.com/attachments/4/1/fa95f5f557aa0ca5afb9584d5cee74743dcb10.png[/img] p2. If $a = 3^p$, $b = 3^q$, $c = 3^r$, and $d = 3^s$ and if $p, q, r$, and $s$ are natural numbers, what is the smallest value of $p\cdot q\cdot r\cdot s$ that satisfies $a^2 + b^3 + c^5 = d^7$ 3. Ucok intends to compose a key code (password) consisting of 8 numbers and meet the following conditions: i. The numbers used are $1, 2, 3, 4, 5, 6, 7, 8$, and $9$. ii. The first number used is at least $1$, the second number is at least $2$, third digit-at least $3$, and so on. iii. The same number can be used multiple times. a) How many different passwords can Ucok compose? b) How many different passwords can Ucok make, if provision (iii) is replaced with: no numbers may be used more than once. p 4. For any integer $a, b$, and $c$ applies $a\times (b + c) = (a\times b) + (a\times c)$. a) Look for examples that show that $a + (b\times c)\ne (a + b)\times (a + c)$. b) Is it always true that $a + (b\times c) = (a + b)\times(a + c)$? Justify your answer. p5. The results of a survey of $N$ people with the question whether they maintain dogs, birds, or cats at home are as follows: $50$ people keep birds, $61$ people don't have dogs, $13$ people don't keep a cat, and there are at least $74$ people who keep the most a little two kinds of animals in the house. What is the maximum value and minimum of possible value of $N$ ?

2001 Slovenia National Olympiad, Problem 4

Find the smallest number of squares on an $8\times8$ board that should be colored so that every $L$-tromino on the board contains at least one colored square.

KoMaL A Problems 2019/2020, A. 777

A finite graph $G(V,E)$ on $n$ points is drawn in the plane. For an edge $e$ of the graph, let $\chi(e)$ denote the number of edges that cross over edge $e$. Prove that \[\sum_{e\in E}\frac{1}{\chi(e)+1}\leq 3n-6.\][i]Proposed by Dömötör Pálvölgyi, Budapest[/i]

2007 USAMO, 3

Let $S$ be a set containing $n^{2}+n-1$ elements, for some positive integer $n$. Suppose that the $n$-element subsets of $S$ are partitioned into two classes. Prove that there are at least $n$ pairwise disjoint sets in the same class.

2018 BMT Spring, 6

Compute $$\sum^{\infty}_{i=0} \sum^{\infty}_{j=0}{i + j \choose i} 3^{-(i+j)}.$$

2010 IFYM, Sozopol, 2

Is it possible to color the cells of a table 19 x 19 in yellow, blue, red, and green so that each rectangle $a$ x $b$ ($a,b\geq 2$) in the table has at least 2 cells in different color?

2022 Baltic Way, 10

A natural number $a$ is said [i]to be contained[/i] in the natural number $b$ if it is possible to obtain a by erasing some digits from $b$ (in their decimal representations). For example, $123$ is contained in $901523$, but not contained in $3412$. Does there exist an infinite set of natural numbers such that no number in the set is contained in any other number from the set?

2003 Greece National Olympiad, 4

On the set $\Sigma$ of points of the plane $\Pi$ we define the operation $*$ which maps each pair $(X, Y )$ of points in $\Sigma$ to the point $Z = X * Y$ that is symmetric to $X$ with respect to $Y .$ Consider a square $ABCD$ in $\Pi$. Is it possible, using the points $A, B, C$ and applying the operation $*$ finitely many times, to construct the point $D?$