Found problems: 14842
EMCC Accuracy Rounds, 2011
[b]p1.[/b] What is the maximum number of points of intersection between a square and a triangle, assuming that no side of the triangle is parallel to any side of the square?
[b]p2.[/b] Two angles of an isosceles triangle measure $80^o$ and $x^o$. What is the sum of all the possible values of $x$?
[b]p3.[/b] Let $p$ and $q$ be prime numbers such that $p + q$ and p + $7q$ are both perfect squares. Find the value of $pq$.
[b]p4.[/b] Anna, Betty, Carly, and Danielle are four pit bulls, each of which is either wearing or not wearing lipstick. The following three facts are true:
(1) Anna is wearing lipstick if Betty is wearing lipstick.
(2) Betty is wearing lipstick only if Carly is also wearing lipstick.
(3) Carly is wearing lipstick if and only if Danielle is wearing lipstick
The following five statements are each assigned a certain number of points:
(a) Danielle is wearing lipstick if and only if Carly is wearing lipstick. (This statement is assigned $1$ point.)
(b) If Anna is wearing lipstick, then Betty is wearing lipstick. (This statement is assigned $6$ points.)
(c) If Betty is wearing lipstick, then both Anna and Danielle must be wearing lipstick. (This statement is assigned $10$ points.)
(d) If Danielle is wearing lipstick, then Anna is wearing lipstick. (This statement is assigned $12$ points.)
(e) If Betty is wearing lipstick, then Danielle is wearing lipstick. (This statement is assigned $14$ points.)
What is the sum of the points assigned to the statements that must be true? (For example, if only statements (a) and (d) are true, then the answer would be $1 + 12 = 13$.)
[b]p5.[/b] Let $f(x)$ and $g(x)$ be functions such that $f(x) = 4x + 3$ and $g(x) = \frac{x + 1}{4}$. Evaluate $g(f(g(f(42))))$.
[b]p6.[/b] Let $A,B,C$, and $D$ be consecutive vertices of a regular polygon. If $\angle ACD = 120^o$, how many sides does the polygon have?
[b]p7.[/b] Fred and George have a fair $8$-sided die with the numbers $0, 1, 2, 9, 2, 0, 1, 1$ written on the sides. If Fred and George each roll the die once, what is the probability that Fred rolls a larger number than George?
[b]p8.[/b] Find the smallest positive integer $t$ such that $(23t)^3 - (20t)^3 - (3t)^3$ is a perfect square.
[b]p9.[/b] In triangle $ABC$, $AC = 8$ and $AC < AB$. Point $D$ lies on side BC with $\angle BAD = \angle CAD$. Let $M$ be the midpoint of $BC$. The line passing through $M$ parallel to $AD$ intersects lines $AB$ and $AC$ at $F$ and $E$, respectively. If $EF =\sqrt2$ and $AF = 1$, what is the length of segment $BC$? (See the following diagram.)
[img]https://cdn.artofproblemsolving.com/attachments/2/3/4b5dd0ae28b09f5289fb0e6c72c7cbf421d025.png[/img]
[b]p10.[/b] There are $2011$ evenly spaced points marked on a circular table. Three segments are randomly drawn between pairs of these points such that no two segments share an endpoint on the circle. What is the probability that each of these segments intersects the other two?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1997 Slovenia National Olympiad, Problem 4
Janez wants to make an $m\times n$ grid (consisting of unit squares) using equal elements of the form $\llcorner$, where each leg of an element has the unit length. No two elements can overlap. For which values of $m$ and $n$ can Janez do the task?
2010 Indonesia TST, 2
A government’s land with dimensions $n \times n$ are going to be sold in phases. The land is divided into $n^2$ squares with dimension $1 \times 1$. In the first phase, $n$ farmers bought a square, and for each rows and columns there is only one square that is bought by a farmer. After one season, each farmer could buy one more square, with the conditions that the newly-bought square has a common side with the farmer’s land and it hasn’t been bought by other farmers. Determine all values of n such that the government’s land could not be entirely sold within $n$ seasons.
1988 Tournament Of Towns, (192) 5
A convex $n$-vertex polygon is partitioned into triangles by nonintersecting diagonals . The following operation, called perestroyka (=reconstruction) , is allowed: two triangles $ABD$ and $BCD$ with a common side may be replaced by the triangles $ABC$ and $ACD$. By $P(n)$ denote the smallest number of perestroykas needed to transform any partitioning into any other one. Prove that
(a) $P ( n ) \ge n - 3$
(b) $P (n) \le 2n - 7$
(c) $P(n) \le 2n - 10$ if $n \ge 13$ .
( D.Fomin , based on ideas of W. Thurston , D . Sleator, R. Tarjan)
2017 Moldova EGMO TST, 3
Let us have $6050$ points in the plane, no three collinear. Find the maximum number $k$ of non-overlapping triangles without common vertices in this plane.
2024 Girls in Mathematics Tournament, 3
Let $C$ be the set of points $(x,y)$ with integer coordinates in the plane where $1\leq x\leq 900$ and $1\leq y\leq 1000$. A polygon $P$ with vertices in $C$ is called [i]emerald[/i] if $P$ has exactly zero or two vertices in each row and each column and all the internal angles of $P$ are $90^\circ$ or $270^\circ$. Find the greatest value of $k$ such that we can color $k$ points in $C$ such that any subset of these $k$ points is not the set of vertices of an [i]emerald[/i] polygon.
[img]https://cdn.discordapp.com/attachments/954427908359876608/1299737432010395678/image.png?ex=671e4a4f&is=671cf8cf&hm=ce008541975226a0e9ea53a93592a7469d8569baca945c1c207d4a722126bb60&[/img]
On the left, an example of an emerald polygon; on the right, an example of a non-emerald polygon.
2024 Baltic Way, 8
Let $a$, $b$, $n$ be positive integers such that $a + b \leq n^2$. Alice and Bob play a game on an (initially uncoloured) $n\times n$ grid as follows:
- First, Alice paints $a$ cells green.
- Then, Bob paints $b$ other (i.e.uncoloured) cells blue.
Alice wins if she can find a path of non-blue cells starting with the bottom left cell and ending with the top right cell (where a path is a sequence of cells such that any two consecutive ones have a common side), otherwise Bob wins. Determine, in terms of $a$, $b$ and $n$, who has a winning strategy.
2023 Iran MO (3rd Round), 2
Find the number of permutations of $\{1,2,...,n\}$ like $\{a_1,...,a_n\}$ st for each $1 \leq i \leq n$:
$$a_i | 2i$$
2005 All-Russian Olympiad Regional Round, 9.3
Two players take turns placing the numbers $1, 2, 3,. . . , 24$, in each of the $24$ squares on the surface of a $2 \times 2 \times 2$ cube (each number can be placed once). The second player wants the sum of the numbers in each cell the rings of $8$ cells encircling the cube were identical. Will he be able to the first player to stop him?
2018 India IMO Training Camp, 3
Sir Alex plays the following game on a row of 9 cells. Initially, all cells are empty. In each move, Sir Alex is allowed to perform exactly one of the following two operations:
[list=1]
[*] Choose any number of the form $2^j$, where $j$ is a non-negative integer, and put it into an empty cell.
[*] Choose two (not necessarily adjacent) cells with the same number in them; denote that number by $2^j$. Replace the number in one of the cells with $2^{j+1}$ and erase the number in the other cell.
[/list]
At the end of the game, one cell contains $2^n$, where $n$ is a given positive integer, while the other cells are empty. Determine the maximum number of moves that Sir Alex could have made, in terms of $n$.
[i]Proposed by Warut Suksompong, Thailand[/i]
1990 Spain Mathematical Olympiad, 6
There are $n$ points in the plane so that no two pairs are equidistant. Each point is connected to the nearest point by a segment. Show that no point is connected to more than five points.
2008 Iran Team Selection Test, 6
Prove that in a tournament with 799 teams, there exist 14 teams, that can be partitioned into groups in a way that all of the teams in the first group have won all of the teams in the second group.
1968 Dutch Mathematical Olympiad, 5
A square of side $n$ ($n$ natural) is divided into $n^2$ squares of side $1$. Each pair of "horizontal" boundary lines and each pair of "vertical" boundary lines enclose a rectangle (a square is also considered a rectangle). A rectangle has a length and a width; the width is less than or equal to the length.
(a) Prove that there are $8$ rectangles of width $n - 1$.
(b) Determine the number of rectangles with width $n -k$ ($0\le k \le n -1,k$ integer).
(c) Determine a formula for $1^3 + 2^3 +...+ n^3$.
2009 Iran MO (3rd Round), 5
A ball is placed on a plane and a point on the ball is marked.
Our goal is to roll the ball on a polygon in the plane in a way that it comes back to where it started and the marked point comes to the top of it. Note that We are not allowed to rotate without moving, but only rolling.
Prove that it is possible.
Time allowed for this problem was 90 minutes.
2018 Latvia Baltic Way TST, P8
Let natural $n \ge 2$ be given. Let Laura be a student in a class of more than $n+2$ students, all of which participated in an olympiad and solved some problems. Additionally, it is known that:
[list]
[*] for every pair of students there is exactly one problem that was solved by both students;
[*] for every pair of problems there is exactly one student who solved both of them;
[*] one specific problem was solved by Laura and exactly $n$ other students.
[/list]
Determine the number of students in Laura's class.
1998 IMC, 4
Let $S_{n}=\{1,2,...,n\}$. How many functions $f:S_{n} \rightarrow S_{n}$ satisfy $f(k) \leq f(k+1)$ and $f(k)=f(f(k+1))$ for $k <n?$
2025 Kyiv City MO Round 2, Problem 3
A sequence \( a_1, a_2, \ldots \) of real numbers satisfies the following condition: for every positive integer \( k \geq 2 \), there exists a positive integer \( i < k \) such that \( a_i + a_k = k \). It is known that for some \( j \), the fractional parts of the numbers \( a_j \) and \( a_{j+1} \) are equal. Prove that for some positive integers \( x \neq y \), the equality
\[
a_x - a_y = x - y
\]
holds.
[i]The fractional part of a real number \( a \) is defined as the number \( \{a\} \in [0, 1) \), which satisfies the condition \( a = n + \{a\} \), where \( n \) is an integer. For example, \( \{-3\} = 0 \), \( \{3.14\} = 0.14 \), and \( \{-3.14\} = 0.86 \).[/i]
[i]Proposed by Mykhailo Shtandenko[/i]
2009 China Team Selection Test, 4
Let positive real numbers $ a,b$ satisfy $ b \minus{} a > 2.$ Prove that for any two distinct integers $ m,n$ belonging to $ [a,b),$ there always exists non-empty set $ S$ consisting of certain integers belonging to $ [ab,(a \plus{} 1)(b \plus{} 1))$ such that $ \frac {\displaystyle\prod_{x\in S}}{mn}$ is square of a rational number.
2010 Abels Math Contest (Norwegian MO) Final, 3
$ a)$
There are $ 25$ participants in a mathematics contest having four problems. Each problem is considered solved or not solved (that is, partial solutions are not possible). Show that either there are four contestants having solved the same problems (or not having solved any of them), or two contestants, one of which has solved exactly the problems that the other did not solve.
$ b)$
There are $ k$ sport clubs for the students of a secondary school. The school has $ 100$ students, and for any selection of three of them, there exists a club having at least one of them, but not all, as a member. What is the least possible value of $ k$?
1981 IMO Shortlist, 5
A cube is assembled with $27$ white cubes. The larger cube is then painted black on the outside and disassembled. A blind man reassembles it. What is the probability that the cube is now completely black on the outside? Give an approximation of the size of your answer.
1961 All-Soviet Union Olympiad, 5
Consider a $2^k$-tuple of numbers $(a_1,a_2,\dots,a_{2^k})$ all equal to $1$ or $-1$. In one step, we transform it to $(a_1a_2,a_2a_3,\dots,a_{2^k}a_1)$. Prove that eventually, we will obtain a $2^k$-tuple consisting only of $1$'s.
Russian TST 2021, P1
In a regular 100-gon, 41 vertices are colored black and the remaining 59 vertices are colored white. Prove that there exist 24 convex quadrilaterals $Q_{1}, \ldots, Q_{24}$ whose corners are vertices of the 100-gon, so that
[list]
[*] the quadrilaterals $Q_{1}, \ldots, Q_{24}$ are pairwise disjoint, and
[*] every quadrilateral $Q_{i}$ has three corners of one color and one corner of the other color.
[/list]
2014 Saudi Arabia IMO TST, 3
There are $2015$ coins on a table. For $i = 1, 2, \dots , 2015$ in succession, one must turn over exactly $i$ coins. Prove that it is always possible either to make all of the coins face up or to make all of the coins face down, but not both.
Mid-Michigan MO, Grades 10-12, 2018
[b]p1.[/b] Twenty five horses participate in a competition. The competition consists of seven runs, five horse compete in each run. Each horse shows the same result in any run it takes part. No two horses will give the same result. After each run you can decide what horses participate in the next run. Could you determine the three fastest horses? (You don’t have stopwatch. You can only remember the order of the horses.)
[b]p2.[/b] Prove that the equation $x^6-143x^5-917x^4+51x^3+77x^2+291x+1575=0$ does not have solutions in integer numbers.
[b]p3.[/b] Show how we can cut the figure shown in the picture into two parts for us to be able to assemble a square out of these two parts. Show how we can assemble a square.
[img]https://cdn.artofproblemsolving.com/attachments/7/b/b0b1bb2a5a99195688638425cf10fe4f7b065b.png[/img]
[b]p4.[/b] The city of Vyatka in Russia produces local drink, called “Vyatka Cola”. «Vyatka Cola» is sold in $1$, $3/4$, and $1/2$-gallon bottles. Ivan and John bought $4$ gallons of “Vyatka Cola”. Can we say for sure, that they can split the Cola evenly between them without opening the bottles?
[b]p5.[/b] Positive numbers a, b and c satisfy the condition $a + bc = (a + b)(a + c)$. Prove that $b + ac = (b + a)(b + c)$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1989 China Team Selection Test, 3
$1989$ equal circles are arbitrarily placed on the table without overlap. What is the least number of colors are needed such that all the circles can be painted with any two tangential circles colored differently.