Found problems: 14842
2022 Greece JBMO TST, 4
Let $n$ be a positive integer. We are given a $3n \times 3n$ board whose unit squares are colored in black and white in such way that starting with the top left square, every third diagonal is colored in black and the rest of the board is in white. In one move, one can take a $2 \times 2$ square and change the color of all its squares in such way that white squares become orange, orange ones become black and black ones become white. Find all $n$ for which, using a finite number of moves, we can make all the squares which were initially black white, and all squares which were initially white black.
Proposed by [i]Boris Stanković and Marko Dimitrić, Bosnia and Herzegovina[/i]
2009 Estonia Team Selection Test, 5
A strip consists of $n$ squares which are numerated in their order by integers $1,2,3,..., n$. In the beginning, one square is empty while each remaining square contains one piece. Whenever a square contains a piece and its some neighbouring square contains another piece while the square immediately following the neighbouring square is empty, one may raise the first piece over the second one to the empty square, removing the second piece from the strip.
Find all possibilites which square can be initially empty, if it is possible to reach a state where the strip contains only one piece and
a) $n = 2008$,
b) $n = 2009$.
2000 Harvard-MIT Mathematics Tournament, 1
How many rectangles are there on an $8 \times 8$ checkerboard?
[img]https://cdn.artofproblemsolving.com/attachments/9/e/7719117ae393d81a3e926acb567f850cc1efa9.png[/img]
2024 IFYM, Sozopol, 8
Let $n \geq 2$ be a positive integer. In a mathematics competition, there are $n+1$ students, with one of them being a hacker. The competition is conducted as follows: each receives the same problem with an open-ended answer, has 5 minutes to give their own answer, after which all answers are submitted simultaneously, the correct answer is announced, then they receive a new problem, and so on. The hacker cheats by using spy cameras to see the answers of the other participants. A correct answer gives 1 point, while a wrong answer gives -1 point to everyone except the hacker; for him, it's 0 points because he managed to hack the scoring system. Prove that regardless of the total number of problems, if at some point the hacker is ahead of the second-place contestant by at least $2^{n-2} + 1$ points, then he has a strategy to ensure he will be the sole winner by the end of the competition.
2025 Caucasus Mathematical Olympiad, 8
Determine for which integers $n \geqslant 4$ the cells of a $1 \times (2n+1)$ table can be filled with the numbers $1, 2, 3, \dots, 2n + 1$ such that the following conditions are satisfied:
[list=i]
[*]Each of the numbers $1, 2, 3, \dots, 2n + 1$ appears exactly once.
[*]In any $1 \times 3$ rectangle, one of the numbers is the arithmetic mean of the other two.
[*]The number $1$ is located in the middle cell of the table.
[/list]
2011 Kyrgyzstan National Olympiad, 6
[b]a)[/b] Among the $21$ pairwise distances between the $7$ points of the plane, prove that one and the same number occurs not more than $12$ times.
[b]b)[/b] Find a maximum number of times may meet the same number among the $15$ pairwise distances between $6$ points of the plane.
2013 India IMO Training Camp, 3
Players $A$ and $B$ play a game with $N \geq 2012$ coins and $2012$ boxes arranged around a circle. Initially $A$ distributes the coins among the boxes so that there is at least $1$ coin in each box. Then the two of them make moves in the order $B,A,B,A,\ldots $ by the following rules:
[b](a)[/b] On every move of his $B$ passes $1$ coin from every box to an adjacent box.
[b](b)[/b] On every move of hers $A$ chooses several coins that were [i]not[/i] involved in $B$'s previous move and are in different boxes. She passes every coin to an adjacent box.
Player $A$'s goal is to ensure at least $1$ coin in each box after every move of hers, regardless of how $B$ plays and how many moves are made. Find the least $N$ that enables her to succeed.
2013 Brazil Team Selection Test, 2
Let $n \geq 1$ be an integer. What is the maximum number of disjoint pairs of elements of the set $\{ 1,2,\ldots , n \}$ such that the sums of the different pairs are different integers not exceeding $n$?
2016 Abels Math Contest (Norwegian MO) Final, 1
A "[size=100][i]walking sequence[/i][/size]" is a sequence of integers with $a_{i+1} = a_i \pm 1$ for every $i$ .Show that there exists a sequence $b_1, b_2, . . . , b_{2016}$ such that for every walking sequence $a_1, a_2, . . . , a_{2016}$ where $1 \leq a_i \leq1010$, there is for some $j$ for which $a_j = b_j$ .
2017 Saint Petersburg Mathematical Olympiad, 7
In a country, some pairs of cities are connected by one-way roads. It turns out that every city has at least two out-going and two in-coming roads assigned to it, and from every city one can travel to any other city by a sequence of roads. Prove that it is possible to delete a cyclic route so that it is still possible to travel from any city to any other city.
2011 Greece Team Selection Test, 2
What is the maximal number of crosses than can fit in a $10\times 11$ board without overlapping?
Is this problem well-known?
[asy]
size(4.58cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -3.18, xmax = 1.4, ymin = -0.22, ymax = 3.38; /* image dimensions */
/* draw figures */
draw((-3.,2.)--(1.,2.));
draw((-2.,3.)--(-2.,0.));
draw((-2.,0.)--(-1.,0.));
draw((-1.,0.)--(-1.,3.));
draw((-1.,3.)--(-2.,3.));
draw((-3.,1.)--(1.,1.));
draw((1.,1.)--(1.,2.));
draw((-3.,2.)--(-3.,1.));
draw((0.,2.)--(0.,1.));
draw((-1.,2.)--(-1.,1.));
draw((-2.,2.)--(-2.,1.));
/* dots and labels */
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]
2022 JBMO TST - Turkey, 5
Each of the $n$ students writes one of the numbers $1,2$ or $3$ on each of the $29$ boards. If any two students wrote different numbers on at least one of the boards and any three students wrote the same number on at least one of the boards, what is the maximum possible value of $n$?
2007 Kyiv Mathematical Festival, 4
The vertices of 100-gon (i.e., polygon with 100 sides) are colored alternately white or black. One of the vertices contains a checker. Two players in turn do two things: move the checker into other vertice along the side of 100-gon and then erase some side. The game ends when it is impossible to move the checker. At the end of the game if the checker is in the white vertice then the first player wins. Otherwise the second player wins. Does any of the players have winning strategy? If yes, then who?
[i]Remark.[/i] The answer may depend on initial position of the checker.
2023 Grosman Mathematical Olympiad, 6
Adam has a secret natural number $x$ which Eve is trying to discover. At each stage Eve may only ask questions of the form "is $x+n$ a prime number?" for some natural number $n$ of her choice.
Prove that Eve may discover $x$ using finitely many questions.
2007 Junior Balkan Team Selection Tests - Moldova, 4
The average age of the participants in a mathematics competition (gymnasts and high school students) increases by exactly one month if three high school age students $18$ years each are included in the competition or if three gymnasts aged $12$ years each are excluded from the competition. How many participants were initially in the contest?
1990 IMO Longlists, 32
Using following five figures, can a parallelepiped be constructed, whose side lengths are all integers larger than $1$ and has volume $1990$ ? (In the figure, every square represents a unit cube.)
\[\text{Squares are the same and all are } \Huge{1 \times 1}\]
[asy]
import graph; size(400); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black; pen xdxdff = rgb(0.49,0.49,1);
draw((2,4)--(0,4),linewidth(2pt)); draw((0,4)--(0,0),linewidth(2pt)); draw((0,0)--(2,0),linewidth(2pt)); draw((2,0)--(2,1),linewidth(2pt)); draw((2,1)--(0,1),linewidth(2pt)); draw((1,0)--(1,4),linewidth(2pt)); draw((2,4)--(2,3),linewidth(2pt)); draw((2,3)--(0,3),linewidth(2pt)); draw((0,2)--(1,2),linewidth(2pt));
label("(1)", (0.56,-1.54), SE*lsf); draw((4,2)--(4,1),linewidth(2pt)); draw((7,2)--(7,1),linewidth(2pt)); draw((4,2)--(7,2),linewidth(2pt)); draw((4,1)--(7,1),linewidth(2pt)); draw((6,0)--(6,3),linewidth(2pt)); draw((5,3)--(5,0),linewidth(2pt)); draw((5,0)--(6,0),linewidth(2pt)); draw((5,3)--(6,3),linewidth(2pt)); label("(2)", (5.13,-1.46), SE*lsf); draw((9,0)--(9,3),linewidth(2pt)); draw((10,3)--(10,0),linewidth(2pt)); draw((12,3)--(12,0),linewidth(2pt)); draw((11,0)--(11,3),linewidth(2pt)); draw((9,2)--(12,2),linewidth(2pt)); draw((12,1)--(9,1),linewidth(2pt)); draw((9,3)--(10,3),linewidth(2pt)); draw((11,3)--(12,3),linewidth(2pt)); draw((12,0)--(11,0),linewidth(2pt)); draw((9,0)--(10,0),linewidth(2pt)); label("(3)", (10.08,-1.48), SE*lsf); draw((14,1)--(17,1),linewidth(2pt)); draw((15,2)--(17,2),linewidth(2pt)); draw((15,2)--(15,0),linewidth(2pt)); draw((15,0)--(14,0)); draw((14,1)--(14,0),linewidth(2pt)); draw((16,2)--(16,0),linewidth(2pt)); label("(4)", (15.22,-1.5), SE*lsf); draw((14,0)--(16,0),linewidth(2pt)); draw((17,2)--(17,1),linewidth(2pt)); draw((19,3)--(19,0),linewidth(2pt)); draw((20,3)--(20,0),linewidth(2pt)); draw((20,3)--(19,3),linewidth(2pt)); draw((19,2)--(20,2),linewidth(2pt)); draw((19,1)--(20,1),linewidth(2pt)); draw((20,0)--(19,0),linewidth(2pt)); label("(5)", (19.11,-1.5), SE*lsf); dot((0,0),ds); dot((0,1),ds); dot((0,2),ds); dot((0,3),ds); dot((0,4),ds); dot((1,4),ds); dot((2,4),ds); dot((2,3),ds); dot((1,3),ds); dot((1,2),ds); dot((1,1),ds); dot((2,1),ds); dot((2,0),ds); dot((1,0),ds); dot((5,0),ds); dot((6,0),ds); dot((5,1),ds); dot((6,1),ds); dot((5,2),ds); dot((6,2),ds); dot((5,3),ds); dot((6,3),ds); dot((7,2),ds); dot((7,1),ds); dot((4,1),ds); dot((4,2),ds); dot((9,0),ds); dot((9,1),ds); dot((9,2),ds); dot((9,3),ds); dot((10,0),ds); dot((11,0),ds); dot((12,0),ds); dot((10,1),ds); dot((10,2),ds); dot((10,3),ds); dot((11,1),ds); dot((11,2),ds); dot((11,3),ds); dot((12,1),ds); dot((12,2),ds); dot((12,3),ds); dot((14,0),ds); dot((15,0),ds); dot((16,0),ds); dot((15,1),ds); dot((14,1),ds); dot((16,1),ds); dot((15,2),ds); dot((16,2),ds); dot((17,2),ds); dot((17,1),ds); dot((19,0),ds); dot((20,0),ds); dot((19,1),ds); dot((20,1),ds); dot((19,2),ds); dot((20,2),ds); dot((19,3),ds); dot((20,3),ds); clip((-0.41,-10.15)--(-0.41,8.08)--(21.25,8.08)--(21.25,-10.15)--cycle);
[/asy]
2010 IFYM, Sozopol, 1
Let $A$ be the set of all sequences from 0’s or 1’s with length 4. What’s the minimal number of sequences that can be chosen, so that an arbitrary sequence from $A$ differs at most in 1 position from one of the chosen?
2015 Peru IMO TST, 12
Find the least positive real number $\alpha$ with the following property: if the weight of a finite number of pumpkins is $1$ ton and the weight of each pumpkin is not greater than $\alpha$ tons then the pumpkins can be distributed in $50$ boxes (some boxes can be empty) so that there is no more than $\alpha$ tons of pumpkins in each box.
2021 STEMS CS Cat A, Q6
Some bugs are sitting on squares of $10\times 10$ board. Each bug has a direction associated with it [b](up, down, left, right)[/b]. After 1 second, the bugs jump one square in [b]their associated [/b]direction. When the bug reaches the edge of the board, the associated direction reverses (up becomes down, left becomes right, down becomes up, and right becomes left) and the bug moves in that direction. It is observed that it is [b]never[/b] the case that two bugs are on same square. What is the maximum number of bugs possible on the board?
2012 Iran MO (3rd Round), 2
Suppose $W(k,2)$ is the smallest number such that if $n\ge W(k,2)$, for each coloring of the set $\{1,2,...,n\}$ with two colors there exists a monochromatic arithmetic progression of length $k$. Prove that
$W(k,2)=\Omega (2^{\frac{k}{2}})$.
Mid-Michigan MO, Grades 10-12, 2022
[b]p1.[/b] Consider a triangular grid: nodes of the grid are painted black and white. At a single step you are allowed to change colors of all nodes situated on any straight line (with the slope $0^o$ ,$60^o$, or $120^o$ ) going through the nodes of the grid. Can you transform the combination in the left picture into the one in the right picture in a finite number of steps?
[img]https://cdn.artofproblemsolving.com/attachments/3/a/957b199149269ce1d0f66b91a1ac0737cf3f89.png[/img]
[b]p2.[/b] Find $x$ satisfying $\sqrt{x\sqrt{x \sqrt{x ...}}} = \sqrt{2022}$ where it is an infinite expression on the left side.
[b]p3.[/b] $179$ glasses are placed upside down on a table. You are allowed to do the following moves. An integer number $k$ is fixed. In one move you are allowed to turn any $k$ glasses .
(a) Is it possible in a finite number of moves to turn all $179$ glasses into “bottom-down” positions if $k=3$?
(b) Is it possible to do it if $k=4$?
[b]p4.[/b] An interval of length $1$ is drawn on a paper. Using a compass and a simple ruler construct an interval of length $\sqrt{93}$.
[b]p5.[/b] Show that $5^{2n+1} + 3^{n+2} 2^{n-1} $ is divisible by $19$ for any positive integer $n$.
[b]p6.[/b] Solve the system $$\begin{cases} \dfrac{xy}{x+y}=1-z \\ \dfrac{yz}{y+z}=2-x \\ \dfrac{xz}{x+z}=2-y \end{cases}$$
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2017 CHKMO, Q1
A, B and C are three persons among a set P of n (n[u]>[/u]3) persons. It is known that A, B and C are friends of one another, and that every one of the three persons has already made friends with more than half the total number of people in P. Given that every three persons who are friends of one another form a [i]friendly group[/i], what is the minimum number of friendly groups that may exist in P?
1987 Tournament Of Towns, (149) 6
Two players play a game on an $8$ by $8$ chessboard according to the following rules. The first player places a knight on the board. Then each player in turn moves the knight , but cannot place it on a square where it has been before. The player who has no move loses. Who wins in an errorless game , the first player or the second one? (The knight moves are the normal ones. )
(V . Zudilin , year 12 student , Beltsy (Moldova))
2012 Cuba MO, 1
There are $1000$ balls of dough $0.38$ and $5000$ balls of dough $0.038$ that must be packed in boxes. A box contains a collection of balls whose total mass is at most $1$. Find the smallest number of boxes that they are needed.
2000 May Olympiad, 5
In a row there are $12$ cards that can be of three kinds: with both white faces, with both black faces or with one white face and the other black. Initially there are $9$ cards with the black side facing up. The first six cards from the left are turned over, leaving $9$ cards with the black face up. The six cards on the left are then turned over, leaving $8$ cards with the black face up. Finally, six cards are turned over: the first three on the left and the last three on the right, leaving $3$ cards with the black face up. Decide if with this information it is possible to know with certainty how many cards of each kind are in the row