This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2024 India IMOTC, 11

There are $n\ge 3$ particles on a circle situated at the vertices of a regular $n$-gon. All these particles move on the circle with the same constant speed. One of the particles moves in the clockwise direction while all others move in the anti-clockwise direction. When particles collide, that is, they are all at the same point, they all reverse the direction of their motion and continue with the same speed as before. Let $s$ be the smallest number of collisions after which all particles return to their original positions. Find $s$. [i]Proposed by N.V. Tejaswi[/i]

2011 China Second Round Olympiad, 3

Given $n\ge 4$ real numbers $a_{n}>...>a_{1} > 0$. For $r > 0$, let $f_{n}(r)$ be the number of triples $(i,j,k)$ with $1\leq i<j<k\leq n$ such that $\frac{a_{j}-a_{i}}{a_{k}-a_{j}}=r$. Prove that ${f_{n}(r)}<\frac{n^{2}}{4}$.

1995 Belarus National Olympiad, Problem 3

Some students of a group were friends of some others. One day all students of the group take part in a picnic. During the picnic some friends had a quarrel with each other, but some other students became friends. After the picnic, the number of friends for each student changed by $1$. Prove that the number of students in the group was even.

1989 Spain Mathematical Olympiad, 6

Prove that among any seven real numbers there exist two,$ a$ and $b$, such that $\sqrt3|a-b|\le |1+ab|$. Give an example of six real numbers not having this property.

2011 Princeton University Math Competition, B4

A function $f:\{1,2, \ldots, n\} \to \{1, \ldots, m\}$ is [i]multiplication-preserving[/i] if $f(i)f(j) = f(ij)$ for all $1 \le i \le j \le ij \le n$, and [i]injective[/i] if $f(i) = f(j)$ only when $i = j$. For $n = 9, m = 88$, the number of injective, multiplication-preserving functions is $N$. Find the sum of the prime factors of $N$, including multiplicity. (For example, if $N = 12$, the answer would be $2 + 2 + 3 = 7$.)

2007 China Team Selection Test, 2

Given $ n$ points arbitrarily in the plane $ P_{1},P_{2},\ldots,P_{n},$ among them no three points are collinear. Each of $ P_{i}$ ($1\le i\le n$) is colored red or blue arbitrarily. Let $ S$ be the set of triangles having $ \{P_{1},P_{2},\ldots,P_{n}\}$ as vertices, and having the following property: for any two segments $ P_{i}P_{j}$ and $ P_{u}P_{v},$ the number of triangles having $ P_{i}P_{j}$ as side and the number of triangles having $ P_{u}P_{v}$ as side are the same in $ S.$ Find the least $ n$ such that in $ S$ there exist two triangles, the vertices of each triangle having the same color.

Russian TST 2017, P2

Let $n$ be a positive integer relatively prime to $6$. We paint the vertices of a regular $n$-gon with three colours so that there is an odd number of vertices of each colour. Show that there exists an isosceles triangle whose three vertices are of different colours.

2014 Junior Balkan Team Selection Tests - Romania, 4

Let $n \ge 6$ be an integer. We have at our disposal $n$ colors. We color each of the unit squares of an $n \times n$ board with one of the $n$ colors. a) Prove that, for any such coloring, there exists a path of a chess knight from the bottom-left to the upper-right corner, that does not use all the colors. b) Prove that, if we reduce the number of colors to $\lfloor 2n/3 \rfloor + 2$, then the statement from a) is true for infinitely many values of $n$ and it is false also for infinitely many values of $n$

1988 China Team Selection Test, 4

Let $k \in \mathbb{N},$ $S_k = \{(a, b) | a, b = 1, 2, \ldots, k \}.$ Any two elements $(a, b)$, $(c, d)$ $\in S_k$ are called "undistinguishing" in $S_k$ if $a - c \equiv 0$ or $\pm 1 \pmod{k}$ and $b - d \equiv 0$ or $\pm 1 \pmod{k}$; otherwise, we call them "distinguishing". For example, $(1, 1)$ and $(2, 5)$ are undistinguishing in $S_5$. Considering the subset $A$ of $S_k$ such that the elements of $A$ are pairwise distinguishing. Let $r_k$ be the maximum possible number of elements of $A$. (i) Find $r_5$. (ii) Find $r_7$. (iii) Find $r_k$ for $k \in \mathbb{N}$.

2014 IFYM, Sozopol, 3

Let each sequence of capital Bulgarian letters be a word (Note that the Bulgarian alphabet consists of 30 letters). We say that a word is [i]calm[/i], if there is no sequence of the letter $P$ in it (two letters $P$ next to each other). Find a clear expression for $f(n)$ (closed formula), which represents the number of calm words with length $n$. Example: [i]РНТ[/i] and [i]ТТРВ[/i] are calm, but [i]ЖГРР[/i] and [i]ЖРРРП[/i] aren’t.

2015 AIME Problems, 12

There are $2^{10}=1024$ possible 10-letter strings in which each letter is either an A or a B. Find the number of such strings that do not have more than 3 adjacent letters that are identical.

2014 All-Russian Olympiad, 3

There are $n$ cells with indices from $1$ to $n$. Originally, in each cell, there is a card with the corresponding index on it. Vasya shifts the card such that in the $i$-th cell is now a card with the number $a_i$. Petya can swap any two cards with the numbers $x$ and $y$, but he must pay $2|x-y|$ coins. Show that Petya can return all the cards to their original position, not paying more than $|a_1-1|+|a_2-2|+\ldots +|a_n-n|$ coins.

2017 JBMO Shortlist, C1

Consider a regular $2n + 1$-gon $P$ in the plane, where n is a positive integer. We say that a point $S$ on one of the sides of $P$ can be seen from a point $E$ that is external to $P$, if the line segment $SE$ contains no other points that lie on the sides of $P$ except $S$. We want to color the sides of $P$ in $3$ colors, such that every side is colored in exactly one color, and each color must be used at least once. Moreover, from every point in the plane external to $P$, at most $2$ different colors on $P$ can be seen (ignore the vertices of $P$, we consider them colorless). Find the largest positive integer for which such a coloring is possible.

1998 Belarus Team Selection Test, 3

Let $ R_1,R_2, \ldots$ be the family of finite sequences of positive integers defined by the following rules: $ R_1 \equal{} (1),$ and if $ R_{n - 1} \equal{} (x_1, \ldots, x_s),$ then \[ R_n \equal{} (1, 2, \ldots, x_1, 1, 2, \ldots, x_2, \ldots, 1, 2, \ldots, x_s, n).\] For example, $ R_2 \equal{} (1, 2),$ $ R_3 \equal{} (1, 1, 2, 3),$ $ R_4 \equal{} (1, 1, 1, 2, 1, 2, 3, 4).$ Prove that if $ n > 1,$ then the $ k$th term from the left in $ R_n$ is equal to 1 if and only if the $ k$th term from the right in $ R_n$ is different from 1.

2024 Belarus Team Selection Test, 2.4

There are $k$ cities in Belarus and $k$ cities in Armenia, between some cities there are non-directed flights. From any Belarusian city there are exactly $n$ flights to Armenian cities, and for every pair of Armenian cities exactly two Belarusian cities have flights to both of the Armenian cities. a) Prove that from every Armenian city there are exactly $n$ flights to Belarusian cities. b) Prove that there exists a flight route in which every city is visited at most once and that consists of at least $\lfloor \frac{(n+1)^2}{4} \rfloor$ cities in each of the countries. [i]D. Gorovoy[/i]

2016 Estonia Team Selection Test, 10

Let $m$ be an integer, $m \ge 2$. Each student in a school is practising $m$ hobbies the most. Among any $m$ students there exist two students who have a common hobby. Find the smallest number of students for which there must exist a hobby which is practised by at least $3$ students .

2021 Belarusian National Olympiad, 9.4

In the table $n \times n$ numbers from $1$ to $n$ are written in a spiral way. For which $n$ all the numbers on the main diagonal are distinct?

2011 Cuba MO, 3

We have a board of $ 2011 \times 2011$, divided by lines parallel to the edges into $1 \times 1$ squares. Manuel, Reinaldo and Jorge (at that time order) play to form squares with vertices at the vertices of the grid. The one who forms the last possible square wins, so that its sides do not cut the sides of any unit square. Who can be sure that he will win?

2021 China Team Selection Test, 6

Let $n(\ge 2)$ be an integer. $2n^2$ contestants participate in a Chinese chess competition, where any two contestant play exactly once. There may be draws. It is known that (1)If A wins B and B wins C, then A wins C. (2)there are at most $\frac{n^3}{16}$ draws. Proof that it is possible to choose $n^2$ contestants and label them $P_{ij}(1\le i,j\le n)$, so that for any $i,j,i',j'\in \{1,2,...,n\}$, if $i<i'$, then $P_{ij}$ wins $P_{i'j'}$.

BIMO 2021, 2

There are $k$ piles of stones with $2020$ stones in each pile. Amber can choose any two non-empty piles of stones, and Barbara can take one stone from one of the two chosen piles and puts it into the other pile. Amber wins if she can eventually make an empty pile. What is the least $k$ such that Amber can always win?

KoMaL A Problems 2020/2021, A. 782

Prove that the edges of a simple planar graph can always be oriented such that the outdegree of all vertices is at most three. [i]UK Competition Problem[/i]

1995 Grosman Memorial Mathematical Olympiad, 5

For non-coplanar points are given in space. A plane $\pi$ is called [i]equalizing [/i] if all four points have the same distance from $\pi$. Find the number of equilizing planes.

2005 Kurschak Competition, 3

We build a tower of $2\times 1$ dominoes in the following way. First, we place $55$ dominoes on the table such that they cover a $10\times 11$ rectangle; this is the first story of the tower. We then build every new level with $55$ domioes above the exact same $10\times 11$ rectangle. The tower is called [i]stable[/i] if for every non-lattice point of the $10\times 11$ rectangle, we can find a domino that has an inner point above it. How many stories is the lowest [i]stable[/i] tower?

1993 IberoAmerican, 2

Show that for every convex polygon whose area is less than or equal to $1$, there exists a parallelogram with area $2$ containing the polygon.

2013 Saudi Arabia BMO TST, 1

The set $G$ is defined by the points $(x,y)$ with integer coordinates, $1 \le x \le 5$ and $1 \le y \le 5$. Determine the number of five-point sequences $(P_1, P_2, P_3, P_4, P_5)$ such that for $1 \le i \le 5$, $P_i = (x_i,i)$ is in $G$ and $|x_1 - x_2| = |x_2 - x_3| = |x_3 - x_4|=|x_4 - x_5| = 1$.