Found problems: 14842
2010 Vietnam National Olympiad, 5
Let a positive integer $n$.Consider square table $3*3$.One use $n$
colors to color all cell of table such that
each cell is colored by exactly one color.
Two colored table is same if we can receive them from other by a rotation
through center of $3*3$ table
How many way to color this square table satifies above conditions.
1984 IMO Longlists, 61
A fair coin is tossed repeatedly until there is a run of an odd number of heads followed by a tail. Determine the expected number of tosses.
2020 Caucasus Mathematical Olympiad, 6
All vertices of a regular 100-gon are colored in 10 colors. Prove that there exist 4 vertices of the given 100-gon which are the vertices of a rectangle and which are colored in at most 2 colors.
1987 Poland - Second Round, 3
On a chessboard with dimensions 1000 by 1000 and squares colored in the usual way in white and black, there is a set A consisting of 1000 squares. Any two fields of set A can be connected by a sequence of fields of set A so that subsequent fields have a common side. Prove that there are at least 250 white fields in set A.
2023 Kyiv City MO Round 1, Problem 4
Positive integers $m, n$ are such that $mn$ is divisible by $9$ but not divisible by $27$. Rectangle $m \times n$ is cut into corners, each consisting of three cells. There are four types of such corners, depending on their orientation; you can see them on the figure below. Could it happen that the number of corners of each type was the exact square of some positive integer?
[i]Proposed by Oleksiy Masalitin[/i]
[img]https://i.ibb.co/Y8QSHyf/Kyiv-MO-2023-10-4.png[/img]
2016 IFYM, Sozopol, 2
A cell is cut from a chessboard $8\, x\, 8$, after which an open broken line was built, which vertices are the centers of the remaining cells. Each segment of the broken line has a length $\sqrt{17}$ or $\sqrt{65}$. When is the number of such broken lines bigger – when the cut cell is $(1,2)$ or $(3,6)$? (The rows and columns on the board are numerated consecutively from 1 to 8.)
2018 CMIMC Combinatorics, 4
At CMU, the A and the B buses arrive once every 20 and 18 minutes, respectively. Kevin prefers the A bus but does not want to wait for too long. He commits to the following waiting scheme: he will take the first A bus that arrives, but after waiting for five minutes he will take the next bus that comes, no matter what it is. Determine the probability that he ends up on an A bus.
2017 Saudi Arabia BMO TST, 4
Consider the set $X =\{1, 2,3, ...,2018\}$.
How many positive integers $k$ with $2 \le k \le 2017$ that satisfy the following conditions:
i) There exists some partition of the set $X$ into $1009$ disjoint pairs which are $(a_1, b_1),(a_2, b_2), ...,(a_{1009}, b_{1009})$ with $|a_i - b_i| \in \{1, k\}$.
ii) For all partitions satisfy the condition (i), the sum $T = \sum^{1009}_{i=1} |a_i - b_i|$ has the right most digit is $9$
1999 IMO Shortlist, 5
Let $n$ be an even positive integer. We say that two different cells of a $n \times n$ board are [b]neighboring[/b] if they have a common side. Find the minimal number of cells on the $n \times n$ board that must be marked so that any cell (marked or not marked) has a marked neighboring cell.
1998 Finnish National High School Mathematics Competition, 5
$15\times 36$-checkerboard is covered with square tiles. There are two kinds of tiles, with side $7$ or $5.$
Tiles are supposed to cover whole squares of the board and be non-overlapping.
What is the maximum number of squares to be covered?
2005 IMO Shortlist, 7
Suppose that $ a_1$, $ a_2$, $ \ldots$, $ a_n$ are integers such that $ n\mid a_1 \plus{} a_2 \plus{} \ldots \plus{} a_n$.
Prove that there exist two permutations $ \left(b_1,b_2,\ldots,b_n\right)$ and $ \left(c_1,c_2,\ldots,c_n\right)$ of $ \left(1,2,\ldots,n\right)$ such that for each integer $ i$ with $ 1\leq i\leq n$, we have
\[ n\mid a_i \minus{} b_i \minus{} c_i
\]
[i]Proposed by Ricky Liu & Zuming Feng, USA[/i]
2010 Albania Team Selection Test, 5
[b]a)[/b] Let's consider a finite number of big circles of a sphere that do not pass all from a point. Show that there exists such a point that is found only in two of the circles. (With big circle we understand the circles with radius equal to the radius of the sphere.)
[b]b)[/b] Using the result of part $a)$ show that, for a set of $n$ points in a plane, that are not all in a line, there exists a line that passes through only two points of the given set.
1994 North Macedonia National Olympiad, 5
A square with the dimension $ 1 \times1 $ has been removed from a square board $ 3 ^n \times 3 ^n $ ($ n \in \mathbb {N}, $ $ n> 1 $).
a) Prove that any defective board with the dimension $ 3 ^ n \times3 ^ n $ can be covered with shaped figures of shape 1 (the 3 squares' one) and of shape 2 (the 5 squares' one). Figures covering the board must not overlap each other and must not cross the edge of the board. Also the squares removed from the board must not be covered.
(b) How many small figures in shape 2 must be used to cover the board?
[img]https://cdn.artofproblemsolving.com/attachments/4/7/e970fadd7acc7fd6f5897f1766a84787f37acc.png[/img]
2019 Math Hour Olympiad, 6-7
[u]Round 1[/u]
[b]p1.[/b] Three two-digit numbers are written on a board. One starts with $5$, another with $6$, and the last one with $7$. Annie added the first and the second numbers; Benny added the second and the third numbers; Denny added the third and the first numbers. Could it be that one of these sums is equal to $148$, and the two other sums are three-digit numbers that both start with $12$?
[b]p2.[/b] Three rocks, three seashells, and one pearl are placed in identical boxes on a circular plate in the order shown. The lids of the boxes are then closed, and the plate is secretly rotated. You can open one box at a time. What is the smallest number of boxes you need to open to know where the pearl is, no matter how the plate was rotated?
[img]https://cdn.artofproblemsolving.com/attachments/0/2/6bb3a2a27f417a84ab9a64100b90b8768f7978.png[/img]
[b]p3.[/b] Two detectives, Holmes and Watson, are hunting the thief Raffles in a library, which has the floorplan exactly as shown in the diagram. Holmes and Watson start from the center room marked $D$. Show that no matter where Raffles is or how he moves, Holmes and Watson can find him. Holmes and Watson do not need to stay together. A detective sees Raffles only if they are in the same room. A detective cannot stand in a doorway to see two rooms at the same time.
[img]https://cdn.artofproblemsolving.com/attachments/c/1/6812f615e60a36aea922f145a1ffc470d0f1bc.png[/img]
[b]p4.[/b] A museum has a $4\times 4$ grid of rooms. Every two rooms that share a wall are connected by a door. Each room contains some paintings. The total number of paintings along any path of $7$ rooms from the lower left to the upper right room is always the same. Furthermore, the total number of paintings along any path of $7$ rooms from the lower right to the upper left room is always the same. The guide states that the museum has exactly $500$ paintings. Show that the guide is mistaken.
[img]https://cdn.artofproblemsolving.com/attachments/4/6/bf0185e142cd3f653d4a9c0882d818c55c64e4.png[/img]
[b]p5.[/b] The numbers $1–14$ are placed around a circle in some order. You can swap two neighbors if they differ by more than $1$. Is it always possible to rearrange the numbers using swaps so they are ordered clockwise from $1$ to $14$?
[u]Round 2[/u]
[b]p6.[/b] A triangulation of a regular polygon is a way of drawing line segments between its vertices so that no two segments cross, and the interior of the polygon is divided into triangles. A flip move erases a line segment between two triangles, creating a quadrilateral, and replaces it with the opposite diagonal through that quadrilateral. This results in a new triangulation.
[img]https://cdn.artofproblemsolving.com/attachments/a/a/657a7cf2382bab4d03046075c6e128374c72d4.png[/img]
Given any two triangulations of a polygon, is it always possible to find a sequence of flip moves that transforms the first one into the second one?
[img]https://cdn.artofproblemsolving.com/attachments/0/9/d09a3be9a01610ffc85010d2ac2f5b93fab46a.png[/img]
[b]p7.[/b] Is it possible to place the numbers from $1$ to $121$ in an $11\times 11$ table so that numbers that differ by $1$ are in horizontally or vertically adjacent cells and all the perfect squares $(1, 4, 9,..., 121)$ are in one column?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2023 Brazil National Olympiad, 3
Let $n$ be a positive integer. Humanity will begin to colonize Mars. The SpaceY and SpaceZ agencies will be responsible for traveling between the planets. To prevent the rockets from colliding, they will travel alternately, with SpaceY making the first trip. On each trip, the responsible agency will do one of two types of mission:
(i) choose a positive integer $k$ and take $k$ people to Mars, creating a new colony on the planet and settling them in that colony;
(ii) choose some existing colony on Mars and a positive integer $k$ strictly smaller than the population of that colony, and bring $k$ people from that colony back to Earth.
To maintain the organization on Mars, a mission cannot result in two colonies with the same population and the number of colonies must be at most $n$. The first agency that cannot carry out a mission will go bankrupt. Determine, in terms of $n$, which agency can guarantee that it will not go bankrupt first.
1999 Brazil National Olympiad, 4
On planet Zork there are some cities. For every city there is a city at the diametrically opposite point. Certain roads join the cities on Zork. If there is a road between cities $P$ and $Q$, then there is also a road between the cities $P'$ and $Q'$ diametrically opposite to $P$ and $Q$. In plus, the roads do not cross each other and for any two cities $P$ and $Q$ it is possible to travel from $P$ to $Q$.
The prices of Kriptonita in Urghs (the planetary currency) in two towns connected by a road differ by at most 100. Prove that there exist two diametrically opposite cities in which the prices of Kriptonita differ by at most 100 Urghs.
2013 Brazil Team Selection Test, 1
Several positive integers are written in a row. Iteratively, Alice chooses two adjacent numbers $x$ and $y$ such that $x>y$ and $x$ is to the left of $y$, and replaces the pair $(x,y)$ by either $(y+1,x)$ or $(x-1,x)$. Prove that she can perform only finitely many such iterations.
[i]Proposed by Warut Suksompong, Thailand[/i]
MMPC Part II 1958 - 95, 1988
[b]p1.[/b] Given an equilateral triangle $ABC$ with area $16\sqrt3$, and an interior point $P$ with distances from vertices $|AP| = 4$ and $|BP| = 6$.
(a) Find the length of each side.
(b) Find the distance from point $P$ to the side $AB$.
(c) Find the distance $|PC|$.
[b]p2.[/b] Several players play the following game. They form a circle and each in turn tosses a fair coin. If the coin comes up heads, that player drops out of the game and the circle becomes smaller, if it comes up tails that player remains in the game until his or her next turn to toss. When only one player is left, he or she is the winner. For convenience let us name them $A$ (who tosses first), $B$ (second), $C$ (third, if there is a third), etc.
(a) If there are only two players, what is the probability that $A$ (the first) wins?
(b) If there are exactly $3$ players, what is the probability that $A$ (the first) wins?
(c) If there are exactly $3$ players, what is the probability that $B$ (the second) wins?
[b]p3.[/b] A circular castle of radius $r$ is surrounded by a circular moat of width $m$ ($m$ is the shortest distance from each point of the castle wall to its nearest point on shore outside the moat). Life guards are to be placed around the outer edge of the moat, so that at least one life guard can see anyone swimming in the moat.
(a) If the radius $r$ is $140$ feet and there are only $3$ life guards available, what is the minimum possible width of moat they can watch?
(b) Find the minimum number of life guards needed as a function of $r$ and $m$.
[img]https://cdn.artofproblemsolving.com/attachments/a/8/d7ff0e1227f9dcf7e49fe770f7dae928581943.png[/img]
[b]p4.[/b] (a)Find all linear (first degree or less) polynomials $f(x)$ with the property that $f(g(x)) = g(f(x))$ for all linear polynomials $g(x)$.
(b) Prove your answer to part (a).
(c) Find all polynomials $f(x)$ with the property that $f(g(x)) = g(f(x))$ for all polynomials $g(x)$.
(d) Prove your answer to part (c).
[b]p5.[/b] A non-empty set $B$ of integers has the following two properties:
i. each number $x$ in the set can be written as a sum $x = y+ z$ for some $y$ and $z$ in the set $B$. (Warning: $y$ and $z$ may or may not be distinct for a given $x$.)
ii. the number $0$ can not be written as a sum $0 = y + z$ for any $y$ and $z$ in the set $B$.
(a) Find such a set $B$ with exactly $6$ elements.
(b) Find such a set $B$ with exactly $6$ elements, and such that the sum of all the $6$ elements is $1988$.
(c) What is the smallest possible size of such a set $B$ ?
(d) Prove your answer to part (c).
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2020 Tournament Of Towns, 6
There are $2n$ consecutive integers on a board. It is permitted to split them into pairs and simultaneously replace each pair by their difference (not necessarily positive) and their sum. Prove that it is impossible to obtain any $2n$ consecutive integers again.
Alexandr Gribalko
2017 IMO, 3
A hunter and an invisible rabbit play a game in the Euclidean plane. The rabbit's starting point, $A_0,$ and the hunter's starting point, $B_0$ are the same. After $n-1$ rounds of the game, the rabbit is at point $A_{n-1}$ and the hunter is at point $B_{n-1}.$ In the $n^{\text{th}}$ round of the game, three things occur in order:
[list=i]
[*]The rabbit moves invisibly to a point $A_n$ such that the distance between $A_{n-1}$ and $A_n$ is exactly $1.$
[*]A tracking device reports a point $P_n$ to the hunter. The only guarantee provided by the tracking device to the hunter is that the distance between $P_n$ and $A_n$ is at most $1.$
[*]The hunter moves visibly to a point $B_n$ such that the distance between $B_{n-1}$ and $B_n$ is exactly $1.$
[/list]
Is it always possible, no matter how the rabbit moves, and no matter what points are reported by the tracking device, for the hunter to choose her moves so that after $10^9$ rounds, she can ensure that the distance between her and the rabbit is at most $100?$
[i]Proposed by Gerhard Woeginger, Austria[/i]
2009 Serbia Team Selection Test, 1
Let $n \in \mathbb N$ and $A_n$ set of all permutations $(a_1, \ldots, a_n)$ of the set $\{1, 2, \ldots , n\}$ for which
\[k|2(a_1 + \cdots+ a_k), \text{ for all } 1 \leq k \leq n.\]
Find the number of elements of the set $A_n$.
[i]Proposed by Vidan Govedarica, Serbia[/i]
2024 Alborz Mathematical Olympiad, P3
A person is locked in a room with a password-protected computer. If they enter the correct password, the door opens and they are freed. However, the password changes every time it is entered incorrectly. The person knows that the password is always a 10-digit number, and they also know that the password change follows a fixed pattern. This means that if the current password is \( b \) and \( a \) is entered, the new password is \( c \), which is determined by \( b \) and \( a \) (naturally, the person does not know \( c \) or \( b \)). Prove that regardless of the characteristics of this computer, the prisoner can free themselves.
Proposed by Reza Tahernejad Karizi
1988 Austrian-Polish Competition, 9
For a rectangle $R$ with integral side lengths, denote by $D(a, b)$ the number of ways of covering $R$ by congruent rectangles with integral side lengths formed by a family of cuts parallel to one side of $R$. Determine the perimeter $P$ of the rectangle $R$ for which $\frac{D(a,b)}{a+b}$ is maximal.
2002 China Girls Math Olympiad, 8
Assume that $ A_1, A_2, \ldots, A_8$ are eight points taken arbitrarily on a plane. For a directed line $ l$ taken arbitrarily on the plane, assume that projections of $ A_1, A_2, \ldots, A_8$ on the line are $ P_1, P_2, \ldots, P_8$ respectively. If the eight projections are pairwise disjoint, they can be arranged as $ P_{i_1}, P_{i_2}, \ldots, P_{i_8}$ according to the direction of line $ l.$ Thus we get one permutation for $ 1, 2, \ldots, 8,$ namely, $ i_1, i_2, \ldots, i_8.$ In the figure, this permutation is $ 2, 1, 8, 3, 7, 4, 6, 5.$ Assume that after these eight points are projected to every directed line on the plane, we get the number of different permutations as $ N_8 \equal{} N(A_1, A_2, \ldots, A_8).$ Find the maximal value of $ N_8.$
2006 Singapore Team Selection Test, 3
A pile of n pebbles is placed in a vertical column. This configuration is
modified according to the following rules. A pebble can be moved if it is at
the top of a column which contains at least two more pebbles than the column
immediately to its right. (If there are no pebbles to the right, think of this as
a column with 0 pebbles.) At each stage, choose a pebble from among those
that can be moved (if there are any) and place it at the top of the column
to its right. If no pebbles can be moved, the configuration is called a final
configuration. For each n, show that, no matter what choices are made at each
stage, the final configuration obtained is unique. Describe that configuration
in terms of n.