Found problems: 14842
2010 IMO, 6
Let $a_1, a_2, a_3, \ldots$ be a sequence of positive real numbers, and $s$ be a positive integer, such that
\[a_n = \max \{ a_k + a_{n-k} \mid 1 \leq k \leq n-1 \} \ \textrm{ for all } \ n > s.\]
Prove there exist positive integers $\ell \leq s$ and $N$, such that
\[a_n = a_{\ell} + a_{n - \ell} \ \textrm{ for all } \ n \geq N.\]
[i]Proposed by Morteza Saghafiyan, Iran[/i]
2011 Tuymaada Olympiad, 2
How many ways are there to remove an $11\times11$ square from a $2011\times2011$ square so that the remaining part can be tiled with dominoes ($1\times 2$ rectangles)?
1971 IMO Longlists, 40
Consider the set of grid points $(m,n)$ in the plane, $m,n$ integers. Let $\sigma$ be a finite subset and define
\[S(\sigma)=\sum_{(m,n)\in\sigma}(100-|m|-|n|) \]
Find the maximum of $S$, taken over the set of all such subsets $\sigma$.
JOM 2015, 5
Navi and Ozna are playing a game where Ozna starts first and the two take turn making moves. A positive integer is written on the waord. A move is to (i) subtract any positive integer at most 2015 from it or (ii) given that the integer on the board is divisible by $2014$, divide by $2014$. The first person to make the integer $0$ wins. To make Navi's condition worse, Ozna gets to pick integers $a$ and $b$, $a\ge 2015$ such that all numbers of the form $an+b$ will not be the starting integer, where $n$ is any positive integer.
Find the minimum number of starting integer where Navi wins.
2002 Romania National Olympiad, 1
Eight card players are seated around a table. One remarks that at some moment, any player and his two neighbours have altogether an odd number of winning cards.
Show that any player has at that moment at least one winning card.
2001 China Team Selection Test, 3
MO Space City plans to construct $n$ space stations, with a unidirectional pipeline connecting every pair of stations. A station directly reachable from station P without passing through any other station is called a directly reachable station of P. The number of stations jointly directly reachable by the station pair $\{P, Q\}$ is to be examined. The plan requires that all station pairs have the same number of jointly directly reachable stations.
(1) Calculate the number of unidirectional cyclic triangles in the space city constructed according to this requirement. (If there are unidirectional pipelines among three space stations A, B, C forming $A \rightarrow B \rightarrow C \rightarrow A$, then triangle ABC is called a unidirectional cyclic triangle.)
(2) Can a space city with $n$ stations meeting the above planning requirements be constructed for infinitely many integers $n \geq 3$?
2001 All-Russian Olympiad, 2
In a magic square $n \times n$ composed from the numbers $1,2,\cdots,n^2$, the centers of any two squares are joined by a vector going from the smaller number to the bigger one. Prove that the sum of all these vectors is zero. (A magic square is a square matrix such that the sums of entries in all its rows and columns are equal.)
2018 China Girls Math Olympiad, 6
Given $k \in \mathbb{N}^+$. A sequence of subset of the integer set $\mathbb{Z} \supseteq I_1 \supseteq I_2 \supseteq \cdots \supseteq I_k$ is called a $k-chain$ if for each $1 \le i \le k$ we have
(i) $168 \in I_i$;
(ii) $\forall x, y \in I_i$, we have $x-y \in I_i$.
Determine the number of $k-chain$ in total.
2018 Morocco TST., 2
A rectangle $\mathcal{R}$ with odd integer side lengths is divided into small rectangles with integer side lengths. Prove that there is at least one among the small rectangles whose distances from the four sides of $\mathcal{R}$ are either all odd or all even.
[i]Proposed by Jeck Lim, Singapore[/i]
2011 All-Russian Olympiad, 1
For some 2011 natural numbers, all the $\frac{2010\cdot 2011}{2}$ possible sums were written out on a board. Could it have happened that exactly one third of the written numbers were divisible by three and also exactly one third of them give a remainder of one when divided by three?
2008 Junior Balkan Team Selection Tests - Moldova, 4
The square table $ 10\times 10$ is divided in squares $ 1\times1$. In each square $ 1\times1$ is written one of the numers $ \{1,2,3,...,9,10\}$. Numbers from any two adjacent or diagonally adjacent squares are reciprocal prime. Prove, that there exists a number, which is written in this table at least 17 times.
1996 Estonia National Olympiad, 5
Suppose that $n$ teterahedra are given in space such that any two of them have at least two common vertices, but any three have at most one common vertex. Find the greatest possible $n$.
2022 Germany Team Selection Test, 2
Given two positive integers $n$ and $m$ and a function $f : \mathbb{Z} \times \mathbb{Z} \to \left\{0,1\right\}$ with the property that
\begin{align*}
f\left(i, j\right) = f\left(i+n, j\right) = f\left(i, j+m\right) \qquad \text{for all } \left(i, j\right) \in \mathbb{Z} \times \mathbb{Z} .
\end{align*}
Let $\left[k\right] = \left\{1,2,\ldots,k\right\}$ for each positive integer $k$.
Let $a$ be the number of all $\left(i, j\right) \in \left[n\right] \times \left[m\right]$ satisfying
\begin{align*}
f\left(i, j\right) = f\left(i+1, j\right) = f\left(i, j+1\right) .
\end{align*}
Let $b$ be the number of all $\left(i, j\right) \in \left[n\right] \times \left[m\right]$ satisfying
\begin{align*}
f\left(i, j\right) = f\left(i-1, j\right) = f\left(i, j-1\right) .
\end{align*}
Prove that $a = b$.
1963 Swedish Mathematical Competition., 5
A road has constant width. It is made up of finitely many straight segments joined by corners, where the inner corner is a point and the outer side is a circular arc. The direction of the straight sections is always between $NE$ ($45^o$) and $SSE$ ($157 1/2^o$). A person wishes to walk along the side of the road from point $A$ to point $B$ on the same side. He may only cross the street perpendicularly. What is the shortest route?
[figure missing]
1996 Tournament Of Towns, (522) 5
A certain island has some ports along the coast and some towns inland. All roads on this island are one-way, and they do not meet except at a port or a town. Moreover, once you leave a certain port or town by road, there is no way you can return there by road. For any two ports $i$ and $j$, let $f_{ij}$ denote the number of different routes along the roads between $i$ and $j$.
(a) Suppose there are four ports on the island: $1, 2, 3$ and $4$, in clockwise order. Show that $$f_{14}f_{23} \ge f_{13}f_{24}$$
(b) Suppose there were six ports on the island: $1, 2, 3, 4, 5$ and $6$, in clockwise order. Show that
$$f_{16}f_{25}f_{34} + f_{15}f_{24}f_{36} + f_{14}f_{26}f_{35}\ge f_{16}f_{24}f_{35}+ f_{15}f_{26}f_{34} + f_{14}f_{25}f_{36}$$
(S Fomin}
2018 Peru Iberoamerican Team Selection Test, P8
A new chess piece named $ mammoth $ moves like a bishop l (that is, in a diagonal), but only in 3 of the 4 possible directions. Different $ mammoths $ in the board may have different missing addresses. Find the maximum number of $ mammoths $ that can be placed on an $ 8 \times 8 $ chessboard so that no $ mammoth $ can be attacked by another.
Kvant 2023, M2766
Let $n{}$ be a natural number. The playing field for a "Master Sudoku" is composed of the $n(n+1)/2$ cells located on or below the main diagonal of an $n\times n$ square. A teacher secretly selects $n{}$ cells of the playing field and tells his student
[list]
[*]the number of selected cells on each row, and
[*]that there is one selected cell on each column.
[/list]The teacher's selected cells form a Master Sudoku if his student can determine them with the given information. How many Master Sudokus are there?
[i]Proposed by T. Amdeberkhan, M. Ruby and F. Petrov[/i]
MOAA Team Rounds, 2019.4
Brandon wants to split his orchestra of $20$ violins, $15$ violas, $10$ cellos, and $5$ basses into three distinguishable groups, where all of the players of each instrument are indistinguishable. He wants each group to have at least one of each instrument and for each group to have more violins than violas, more violas than cellos, and more cellos than basses. How many ways are there for Brandon to split his orchestra following these conditions?
2002 Baltic Way, 8
Let $P$ be a set of $n\ge 3$ points in the plane, no three of which are on a line. How many possibilities are there to choose a set $T$ of $\binom{n-1}{2}$ triangles, whose vertices are all in $P$, such that each triangle in $T$ has a side that is not a side of any other triangle in $T$?
2006 Cono Sur Olympiad, 6
We divide the plane in squares shaped of side 1, tracing straight lines parallel bars to the coordinate axles. Each square is painted of black white or. To each as, we recolor all simultaneously squares, in accordance with the following rule: each square $Q$ adopts the color that more appears in the
configuration of five squares indicated in the figure. The recoloration process is repeated indefinitely.
Determine if exists an initial coloration with black a finite amount of squares such that always has at least one black square, not mattering how many seconds if had passed since the beginning of the process.
2015 Indonesia MO Shortlist, C8
It is known that there are $3$ buildings in the same shape which are located in an equilateral triangle. Each building has a $2015$ floor with each floor having one window. In all three buildings, every $1$st floor is uninhabited, while each floor of others have exactly one occupant. All windows will be colored with one of red, green or blue. The residents of each floor of a building can see the color of the window in the other buildings of the the same floor and one floor just below it, but they cannot see the colors of the other windows of the two buildings. Besides that, sresidents cannot see the color of the window from any floor in the building itself. For example, resident of the $10$th floor can see the colors of the $9$th and $10$th floor windows for the other buildings (a total of $4$ windows) and he can't see the color of the other window. We want to color the windows so that each resident can see at lest $1$ window of each color. How many ways are there to color those windows?
2013 Irish Math Olympiad, 4
Each of the $36$ squares of a $6 \times 6$ table is to be coloured either Red, Yellow or Blue.
(a) No row or column is contain more than two squares of the same colour.
(b) In any four squares obtained by intersecting two rows with two columns, no colour is to occur exactly three times.
In how many dierent ways can the table be coloured if both of these rules are to be respected?
2015 Danube Mathematical Competition, 5
A lantern needs exactly $2$ charged batteries in order to work.We have available $n$ charged batteries and $n$ uncharged batteries,$n\ge 4$(all batteries look the same).
A [i]try[/i] consists in introducing two batteries in the lantern and verifying if the lantern works.Prove that we can find a pair of charged batteries in at most $n+2$ [i]tries[/i].
2020 Junior Balkan Team Selection Tests - Moldova, 3
Let there be a regular polygon of $n$ sides with center $O$. Determine the highest possible number of vertices $k$ $(k \geq 3)$, which can be coloured in green, such that $O$ is strictly outside of any triangle with $3$ vertices coloured green. Determine this $k$ for $a) n=2019$ ; $b) n=2020$.
2020 CMIMC Combinatorics & Computer Science, 5
Seven cards numbered $1$ through $7$ lay stacked in a pile in ascending order from top to bottom ($1$ on top, $7$ on bottom). A shuffle involves picking a random card [i]of the six not currently on top[/i], and putting it on top. The relative order of all the other cards remains unchanged. Find the probability that, after $10$ shuffles, $6$ is higher in the pile than $3$.