Found problems: 14842
2021 Saudi Arabia JBMO TST, 4
Let $F$ is the set of all sequences $\{(a_1, a_2, . . . , a_{2020})\}$ with $a_i \in \{-1, 1\}$ for all $i = 1,2,...,2020$. Prove that there exists a set $S$, such that $S \subset F$, $|S| = 2020$ and for any $(a_1,a_2,...,a_{2020}) \in F$ there exists $(b_1,b_2,...,b_{2020}) \in S$, such that $\sum_{i=1}^{2020} a_ib_i = 0$.
KoMaL A Problems 2020/2021, A. 791
A lightbulb is given that emits red, green or blue light and an infinite set $S$ of switches, each with three positions labeled red, green and blue. We know the following:
[list=1]
[*]For every combination of the switches the lighbulb emits a given color.
[*]If all switches are in a position with a given color, the lightbulb emits the same color.
[*]If there are two combinations of the switches where each switch is in a different position, the lightbulb emits a different color for the two combinations.
[/list]
We create the following set $U$ containing some of the subsets of $S$: for each combination of the switches let us observe the color of the lightbulb, and put the set of those switches in $U$ which are in the same position as the color of the lightbulb.
Prove that $U$ is an ultrafilter on $S$. In other words, prove that $U$ satisfies the following conditions:
[list=1]
[*]The empty set is not in $U.$
[*]If two sets are in $U,$ their intersection is also in $U.$
[*]If a set is in $U,$ every subset of $S$ containing it is also in $U.$
[*]Considering a set and its complement in $S,$ exactly one of these sets is contained in $U.$
[/list]
VI Soros Olympiad 1999 - 2000 (Russia), 10.5
For what values of $k\ge2$ can the set of natural numbers be colored in $k$ colors in such a way that it contains no single - color infinite arithmetic progression, but for any two colors there is a progression whose members are each colored in one of these two colors?
1956 Putnam, B5
Show that a graph with 2n points and $n^2 + 1$ edges necessarily contains a 3-cycle, but that we can find a graph with 2n points and $n^2$ edges without a 3-cycle.
please prove it without induction .
2006 Thailand Mathematical Olympiad, 16
Find the number of triples of sets $(A, B, C)$ such that $A \cup B \cup C = \{1, 2, 3, ... , 2549\}$
2011 Saudi Arabia BMO TST, 2
For each positive integer $n$ let the set $A_n$ consist of all numbers $\pm 1 \pm 2 \pm ...\pm n$. For example, $$A_1 = \{-1,1\}, A_2 = \{ -3 ,-1 ,1 ,3 \} , A_3 = \{ -6 ,-4 ,-2 ,0 ,2 ,4 ,6 \}.$$
Find the number of elements in $A_n$ .
1995 Nordic, 2
Messages are coded using sequences consisting of zeroes and ones only. Only sequences with at most two consecutive ones or zeroes are allowed. (For instance the sequence $011001$ is allowed, but $011101$ is not.) Determine the number of sequences consisting of exactly $12$ numbers.
2021 Taiwan TST Round 2, 1
In a regular 100-gon, 41 vertices are colored black and the remaining 59 vertices are colored white. Prove that there exist 24 convex quadrilaterals $Q_{1}, \ldots, Q_{24}$ whose corners are vertices of the 100-gon, so that
[list]
[*] the quadrilaterals $Q_{1}, \ldots, Q_{24}$ are pairwise disjoint, and
[*] every quadrilateral $Q_{i}$ has three corners of one color and one corner of the other color.
[/list]
2001 Korea Junior Math Olympiad, 4
Some $n \geq 3$ cities are connected with railways, so that you can travel from one city to every other, not necessarily directly. However, the railways are structured in such a way that there is only one way to get from one city to another, assuming you don't pass through the same city again. Let $A$ be the set of these cities and railways. Show that there exists a Subset of $A$, let's say $C$, such that
(1) $C$ has at least $[(n+1)/2]$ cities as its element.
(2) No two elements of $C$ are directly connected with railways.
2013 Danube Mathematical Competition, 3
Show that, for every integer $r \ge 2$, there exists an $r$-chromatic simple graph (no loops, nor multiple edges) which has no cycle of less than $6$ edges
2021 IMO Shortlist, C8
Determine the largest integer $N$ for which there exists a table $T$ of integers with $N$ rows and $100$ columns that has the following properties:
$\text{(i)}$ Every row contains the numbers $1$, $2$, $\ldots$, $100$ in some order.
$\text{(ii)}$ For any two distinct rows $r$ and $s$, there is a column $c$ such that $|T(r,c) - T(s, c)|\geq 2$. (Here $T(r,c)$ is the entry in row $r$ and column $c$.)
2007 Kyiv Mathematical Festival, 3
a) One has a set of stones with weights $1, 2, \ldots, 20$ grams. Find all $k$ for which it is possible to place $k$ and the rest $20-k$ stones from the set respectively on the two pans of a balance so that equilibrium is achieved.
b) One has a set of stones with weights $1, 2, \ldots, 51$ grams. Find all $k$ for which it is possible to place $k$ and the rest $51-k$ stones from the set respectively on the two pans of a balance so that equilibrium is achieved.
c) One has a set of stones with weights $1, 2, \ldots, n$ grams ($n\in\mathbb{N}$). Find all $n$ and $k$ for which it is possible to place $k$ and the rest $n-k$ stones from the set respectively on the two pans of a balance so that equilibrium is achieved.
[size=75] a) and b) were proposed at the festival, c) is a generalization[/size]
1986 Miklós Schweitzer, 2
Show that if $k\leq \frac n2$ and $\mathcal F$ is a family $k\times k$ submatrices of an $n\times n$ matrix such that any two intersect then
$$|\mathcal F|\leq \binom{n-1}{k-1}^2$$
[Gy. Katona]
2011 QEDMO 10th, 4
In year $2525$ the QED has $3n + 1$ members, of which $n$ are identical robots and $2n + 1$ (uncloned and therefore distinguishable) people. For the $263^{th}$ board election in Wurzburg there will be exactly $n$ members. Find out how many distinguishable compositions are conceivable for this.
1998 Tournament Of Towns, 2
A chess king tours an entire $8\times 8$ chess board, visiting each square exactly once and returning at last to his starting position. Prove that he made an even number of diagonal moves.
(V Proizvolov)
2003 Baltic Way, 6
Let $n\ge 2$ and $d\ge 1$ be integers with $d\mid n$, and let $x_1,x_2,\ldots x_n$ be real numbers such that $x_1+x_2+\cdots + x_n=0$. Show that there are at least $\binom{n-1}{d-1}$ choices of $d$ indices $1\le i_1<i_2<\cdots <i_d\le n $ such that $x_{i_{1}}+x_{i_{2}}+\cdots +x_{i_{d}}\ge 0$.
LMT Speed Rounds, 2019 F
[b]p1.[/b] For positive real numbers $x, y$, the operation $\otimes$ is given by $x \otimes y =\sqrt{x^2 - y}$ and the operation $\oplus$ is given by $x \oplus y =\sqrt{x^2 + y}$. Compute $(((5\otimes 4)\oplus 3)\otimes2)\oplus 1$.
[b]p2.[/b] Janabel is cutting up a pizza for a party. She knows there will either be $4$, $5$, or $6$ people at the party including herself, but can’t remember which. What is the least number of slices Janabel can cut her pizza to guarantee that everyone at the party will be able to eat an equal number of slices?
[b]p3.[/b] If the numerator of a certain fraction is added to the numerator and the denominator, the result is $\frac{20}{19}$ . What is the fraction?
[b]p4.[/b] Let trapezoid $ABCD$ be such that $AB \parallel CD$. Additionally, $AC = AD = 5$, $CD = 6$, and $AB = 3$. Find $BC$.
[b]p5.[/b] AtMerrick’s Ice Cream Parlor, customers can order one of three flavors of ice cream and can have their ice cream in either a cup or a cone. Additionally, customers can choose any combination of the following three toppings: sprinkles, fudge, and cherries. How many ways are there to buy ice cream?
[b]p6.[/b] Find the minimum possible value of the expression $|x+1|+|x-4|+|x-6|$.
[b]p7.[/b] How many $3$ digit numbers have an even number of even digits?
[b]p8.[/b] Given that the number $1a99b67$ is divisible by $7$, $9$, and $11$, what are $a$ and $b$? Express your answer as an ordered pair.
[b]p9.[/b] Let $O$ be the center of a quarter circle with radius $1$ and arc $AB$ be the quarter of the circle’s circumference. Let $M$,$N$ be the midpoints of $AO$ and $BO$, respectively. Let $X$ be the intersection of $AN$ and $BM$. Find the area of the region enclosed by arc $AB$, $AX$,$BX$.
[b]p10.[/b] Each square of a $5$-by-$1$ grid of squares is labeled with a digit between $0$ and $9$, inclusive, such that the sum of the numbers on any two adjacent squares is divisible by $3$. How many such labelings are possible if each digit can be used more than once?
[b]p11.[/b] A two-digit number has the property that the difference between the number and the sum of its digits is divisible by the units digit. If the tens digit is $5$, how many different possible values of the units digit are there?
[b]p12.[/b] There are $2019$ red balls and $2019$ white balls in a jar. One ball is drawn and replaced with a ball of the other color. The jar is then shaken and one ball is chosen. What is the probability that this ball is red?
[b]p13.[/b] Let $ABCD$ be a square with side length $2$. Let $\ell$ denote the line perpendicular to diagonal $AC$ through point $C$, and let $E$ and $F$ be themidpoints of segments $BC$ and $CD$, respectively. Let lines $AE$ and $AF$ meet $\ell$ at points $X$ and $Y$ , respectively. Compute the area of $\vartriangle AXY$ .
[b]p14.[/b] Express $\sqrt{21-6\sqrt6}+\sqrt{21+6\sqrt6}$ in simplest radical form.
[b]p15.[/b] Let $\vartriangle ABC$ be an equilateral triangle with side length two. Let $D$ and $E$ be on $AB$ and $AC$ respectively such that $\angle ABE =\angle ACD = 15^o$. Find the length of $DE$.
[b]p16.[/b] $2018$ ants walk on a line that is $1$ inch long. At integer time $t$ seconds, the ant with label $1 \le t \le 2018$ enters on the left side of the line and walks among the line at a speed of $\frac{1}{t}$ inches per second, until it reaches the right end and walks off. Determine the number of ants on the line when $t = 2019$ seconds.
[b]p17.[/b] Determine the number of ordered tuples $(a_1,a_2,... ,a_5)$ of positive integers that satisfy $a_1 \le a_2 \le ... \le a_5 \le 5$.
[b]p18.[/b] Find the sum of all positive integer values of $k$ for which the equation $$\gcd (n^2 -n -2019,n +1) = k$$ has a positive integer solution for $n$.
[b]p19.[/b] Let $a_0 = 2$, $b_0 = 1$, and for $n \ge 0$, let
$$a_{n+1} = 2a_n +b_n +1,$$
$$b_{n+1} = a_n +2b_n +1.$$
Find the remainder when $a_{2019}$ is divided by $100$.
[b]p20.[/b] In $\vartriangle ABC$, let $AD$ be the angle bisector of $\angle BAC$ such that $D$ is on segment $BC$. Let $T$ be the intersection of ray $\overrightarrow{CB}$ and the line tangent to the circumcircle of $\vartriangle ABC$ at $A$. Given that $BD = 2$ and $TC = 10$, find the length of $AT$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1991 All Soviet Union Mathematical Olympiad, 550
a) $r_1, r_2, ... , r_{100}, c_1, c_2, ... , c_{100}$ are distinct reals. The number $r_i + c_j$ is written in position $i, j$ of a $100 \times 100$ array. The product of the numbers in each column is $1$. Show that the product of the numbers in each row is $-1$.
b) $r_1, r_2, ... , r_{2n}, c_1, c_2, ... , c_{2n}$ are distinct reals. The number $r_i + c_j$ is written in position $i, j$ of a $2n \times 2n$ array. The product of the numbers in each column is the same. Show that the product of the numbers in each row is also the same.
2022 MOAA, 10
Three integers $A, B, C$ are written on a whiteboard. Every move, Mr. Doba can either subtract $1$ from all numbers on the board, or choose two numbers on the board and subtract $1$ from both of them whilst leaving the third untouched. For how many ordered triples $(A, B, C)$ with $1 \le A < B < C\le 20$ is it possible for Mr. Doba to turn all three of the numbers on the board to $0$?
2012 Iran MO (3rd Round), 1
We've colored edges of $K_n$ with $n-1$ colors. We call a vertex rainbow if it's connected to all of the colors. At most how many rainbows can exist?
[i]Proposed by Morteza Saghafian[/i]
1998 All-Russian Olympiad Regional Round, 10.4
In the first $1999$ cells of the computer are written numbers in the specified order:: $1$, $2$, $4$,$... $, $2^{1998}$. Two programmers take turns reducing in one move per unit number in five different cells. If a negative number appears in one of the cells, then the computer breaks down and the broken repairs are paid for. Which programmer can protect himself from financial losses, regardless of his partner’s moves, and how should he do this act?
2014 District Olympiad, 2
We call a nonempty set $M$ good if its elements are positive integers, each
having exactly $4$ divisors. If the good set $M$ has $n$ elements, we denote by
$S_{M}$ the sum of all $4n$ divisors of its members (the sum may contain
repeating terms).
a) Prove that $A=\{2\cdot37,19\cdot37,29\cdot37\}$ is good and $S_{A}=2014$.
b) Prove that if the set $B$ is good and $8\in B$, then $S_{B}\neq2014$.
2001 Tournament Of Towns, 5
The only pieces on an $8\times8$ chessboard are three rooks. Each moves along a row or a column without running to or jumping over another rook. The white rook starts at the bottom left corner, the black rook starts in the square directly above the white rook, and the red rook starts in the square directly to the right of the white rook. The white rook is to finish at the top right corner, the black rook in the square directly to the left of the white rook, and the red rook in the square directly below the white rook. At all times, each rook must be either in the same row or the same column as another rook. Is it possible to get the rooks to their destinations?
2017 Princeton University Math Competition, 8
Tristan is eating his favorite cereal, Tiger Crunch, which has marshmallows of two colors, black and orange. He eats the marshmallows by randomly choosing from those remaining one at a time, and he starts out with $17$ orange and $5$ black marshmallows. If $\frac{p}{q}$ is the expected number of marshmallows remaining the instant that there is only one color left, and $p$ and $q$ are relatively prime positive integers, find $p + q$.
2018 Thailand TST, 1
A rectangle $\mathcal{R}$ with odd integer side lengths is divided into small rectangles with integer side lengths. Prove that there is at least one among the small rectangles whose distances from the four sides of $\mathcal{R}$ are either all odd or all even.
[i]Proposed by Jeck Lim, Singapore[/i]