This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

1999 Turkey MO (2nd round), 3

For any two positive integers $n$ and $p$, prove that there are exactly ${{(p+1)}^{n+1}}-{{p}^{n+1}}$ functions $f:\left\{ 1,2,...,n \right\}\to \left\{ -p,-p+1,-p+2,....,p-1,p \right\}$ such that $\left| f(i)-f(j) \right|\le p$ for all $i,j\in \left\{ 1,2,...,n \right\}$.

2003 Estonia Team Selection Test, 1

Two treasure-hunters found a treasure containing coins of value $a_1< a_2 < ... < a_{2003}$ (the quantity of coins of each value is unlimited). The first treasure-hunter forms all the possible sets of different coins containing odd number of elements, and takes the most valuable coin of each such set. The second treasure-hunter forms all the possible sets of different coins containing even number of elements, and takes the most valuable coin of each such set. Which one of them is going to have more money and how much more? (H. Nestra)

2014 Contests, 3

Given are 100 different positive integers. We call a pair of numbers [i]good[/i] if the ratio of these numbers is either 2 or 3. What is the maximum number of good pairs that these 100 numbers can form? (A number can be used in several pairs.) [i]Proposed by Alexander S. Golovanov, Russia[/i]

Mid-Michigan MO, Grades 10-12, 2002

[b]p1.[/b] Find all integer solutions of the equation $a^2 - b^2 = 2002$. [b]p2.[/b] Prove that the disks drawn on the sides of a convex quadrilateral as on diameters cover this quadrilateral. [b]p3.[/b] $30$ students from one school came to Mathematical Olympiad. In how many different ways is it possible to place them in four rooms? [b]p4.[/b] A $12$ liter container is filled with gasoline. How to split it in two equal parts using two empty $5$ and $8$ liter containers? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2024 Bulgarian Autumn Math Competition, 11.3

Let $n\ge 3$ be an integer. Consider $n$ points in the plane, no three lying on the same line, and a squirrel in each one of them. Alex wants to give hazelnuts to the squirrels, so he proceeds as follows: for each convex polygon with vertices among the n points, he identifies the squirrels which lie on its sides or in its interior and gives to each of these squirrels q hazelnuts, where q is their number. At the end of the process, a squirrel with the least number of hazelnuts is called unlucky. Determine the maximum number of hazelnuts an unlucky squirrel can get. ([i]proposed by Cristi Savesku[/i])

2022 Abelkonkurransen Finale, 3

Nils has an $M \times N$ board where $M$ and $N$ are positive integers, and a tile shaped as shown below. What is the smallest number of squares that Nils must color, so that it is impossible to place the tile on the board without covering a colored square? The tile can be freely rotated and mirrored, but it must completely cover four squares. [asy] usepackage("tikz"); label("% \begin{tikzpicture} \draw[step=1cm,color=black] (0,0) grid (2,1); \draw[step=1cm,color=black] (1,1) grid (3,2); \fill [yellow] (0,0) rectangle (2,1); \fill [yellow] (1,1) rectangle (3,2); \draw[step=1cm,color=black] (0,0) grid (2,1); \draw[step=1cm,color=black] (1,1) grid (3,2); \end{tikzpicture} "); [/asy]

Russian TST 2016, P1

There are 100 saucers in a circle. Two people take turns putting marmalade of various colors in empty saucers. The first person can choose one or three empty saucers and fill each of them with marmalade of arbitrary color. The second one can choose one empty saucer and fill it with marmalade of arbitrary color. There should not be two adjacent saucers with marmalade of the same color. The game ends when all the saucers are filled. The loser is the last player to introduce a new color of marmalade into the game. Who has a winning strategy?

2005 IMO Shortlist, 2

Let $a_1,a_2,\ldots$ be a sequence of integers with infinitely many positive and negative terms. Suppose that for every positive integer $n$ the numbers $a_1,a_2,\ldots,a_n$ leave $n$ different remainders upon division by $n$. Prove that every integer occurs exactly once in the sequence $a_1,a_2,\ldots$.

2007 Italy TST, 2

In a competition, there were $2n+1$ teams. Every team plays exatly once against every other team. Every match finishes with the victory of one of the teams. We call cyclical a 3-subset of team ${ A,B,C }$ if $A$ won against $B$, $B$ won against $C$ , $C$ won against $A$. (a) Find the minimum of cyclical 3-subset (depending on $n$); (b) Find the maximum of cyclical 3-subset (depending on $n$).

2017 ABMC, Accuracy

[b]p1.[/b] Len's Spanish class has four tests in the first term. Len scores $72$, $81$, and $78$ on the first three tests. If Len wants to have an 80 average for the term, what is the minimum score he needs on the last test? [b]p2.[/b] In $1824$, the Electoral College had $261$ members. Andrew Jackson won $99$ Electoral College votes and John Quincy Adams won $84$ votes. A plurality occurs when no candidate has more than $50\%$ of the votes. Should a plurality occur, the vote goes to the House of Representatives to break the tie. How many more votes would Jackson have needed so that a plurality would not have occurred? [b]p3.[/b] $\frac12 + \frac16 + \frac{1}{12} + \frac{1}{20} + \frac{1}{30}= 1 - \frac{1}{n}$. Find $n$. [b]p4.[/b] How many ways are there to sit Samuel, Esun, Johnny, and Prat in a row of $4$ chairs if Prat and Johnny refuse to sit on an end? [b]p5.[/b] Find an ordered quadruple $(w, x, y, z)$ that satisfies the following: $$3^w + 3^x + 3^y = 3^z$$ where $w + x + y + z = 2017$. [b]p6.[/b] In rectangle $ABCD$, $E$ is the midpoint of $CD$. If $AB = 6$ inches and $AE = 6$ inches, what is the length of $AC$? [b]p7.[/b] Call an integer interesting if the integer is divisible by the sum of its digits. For example, $27$ is divisible by $2 + 7 = 9$, so $27$ is interesting. How many $2$-digit interesting integers are there? [b]p8.[/b] Let $a\#b = \frac{a^3-b^3}{a-b}$ . If $a, b, c$ are the roots of the polynomial $x^3 + 2x^2 + 3x + 4$, what is the value of $a\#b + b\#c + c\#a$? [b]p9.[/b] Akshay and Gowri are examining a strange chessboard. Suppose $3$ distinct rooks are placed into the following chessboard. Find the number of ways that one can place these rooks so that they don't attack each other. Note that two rooks are considered attacking each other if they are in the same row or the same column. [img]https://cdn.artofproblemsolving.com/attachments/f/1/70f7d68c44a7a69eb13ce12291c0600d11027c.png[/img] [b]p10.[/b] The Earth is a very large sphere. Richard and Allen have a large spherical model of Earth, and they would like to (for some strange reason) cut the sphere up with planar cuts. If each cut intersects the sphere, and Allen holds the sphere together so it does not fall apart after each cut, what is the maximum number of pieces the sphere can be cut into after $6$ cuts? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2022 Saudi Arabia BMO + EGMO TST, p3

We consider all partitions of a positive integer n into a sum of (nonnegative integer) exponents of $2$ (i.e. $1$, $2$, $4$, $8$ , $ . . .$ ). A number in the sum is allowed to repeat an arbitrary number of times (e.g. $7 = 2 + 2 + 1 + 1 + 1$) and two partitions differing only in the order of summands are considered to be equal (e.g. $8 = 4 + 2 + 1 + 1$ and $8 = 1 + 2 + 1 + 4$ are regarded to be the same partition). Let $E(n)$ be the number of partitions in which an even number of exponents appear an odd number of times and $O(n)$ the number of partitions in which an odd number of exponents appear an odd number of times. For example, for $n = 5$ partitions counted in $E(n)$ are $5 = 4 + 1$ and $5 = 2 + 1 + 1 + 1$, whereas partitions counted in O(n) are $5 = 2 + 2 + 1$ and $5 = 1 + 1 + 1 + 1 + 1$, hence $E(5) = O(5) = 2$. Find $E(n) - O(n)$ as a function of $n$.

Kvant 2022, M2706

16 NHL teams in the first playoff round divided in pairs and to play series until 4 wins (thus the series could finish with score 4-0, 4-1, 4-2, or 4-3). After that 8 winners of the series play the second playoff round divided into 4 pairs to play series until 4 wins, and so on. After all the final round is over, it happens that $k$ teams have non-negative balance of wins (for example, the team that won in the first round with a score of 4-2 and lost in the second with a score of 4-3 fits the condition: it has $4+3=7$ wins and $2+4=6$ losses). Find the least possible $k$.

2017 Romania EGMO TST, P4

In $p{}$ of the vertices of the regular polygon $A_0A_1\ldots A_{2016}$ we write the number $1{}$ and in the remaining ones we write the number $-1.{}$ Let $x_i{}$ be the number written on the vertex $A_i{}.$ A vertex is [i]good[/i] if \[x_i+x_{i+1}+\cdots+x_j>0\quad\text{and}\quad x_i+x_{i-1}+\cdots+x_k>0,\]for any integers $j{}$ and $k{}$ such that $k\leqslant i\leqslant j.$ Note that the indices are taken modulo $2017.$ Determine the greatest possible value of $p{}$ such that, regardless of numbering, there always exists a good vertex.

2007 Grigore Moisil Intercounty, 4

Show that the number of finite sequences of length $ n $ that are formed with $ 5 $ distinct numbers such that for any three consecutive terms of the sequence at least two are equal, is $ \frac{5}{2}\left( (-1)^n+3^n \right) . $

1982 All Soviet Union Mathematical Olympiad, 344

Given a sequence of real numbers $a_1, a_2, ... , a_n$. Prove that it is possible to choose some of the numbers providing $3$ conditions: a) not a triple of successive members is chosen, b) at least one of every triple of successive members is chosen, c) the absolute value of chosen numbers sum is not less that one sixth part of the initial numbers' absolute values sum.

DMM Individual Rounds, 2003

[b]p1.[/b] If Suzie has $6$ coins worth $23$ cents, how many nickels does she have? [b]p2.[/b] Let $a * b = (a - b)/(a + b)$. If $8 * (2 * x) = 4/3$, what is $x$? [b]p3.[/b] How many digits does $x = 100000025^2 - 99999975^2$ have when written in decimal form? [b]p4.[/b] A paperboy’s route covers $8$ consecutive houses along a road. He does not necessarily deliver to all the houses every day, but he always traverses the road in the same direction, and he takes care never to skip over $2$ consecutive houses. How many possible routes can he take? [b]p5.[/b] A regular $12$-gon is inscribed in a circle of radius $5$. What is the sum of the squares of the distances from any one fixed vertex to all the others? [b]p6.[/b] In triangle $ABC$, let $D, E$ be points on $AB$, $AC$, respectively, and let $BE$ and $CD$ meet at point $P$. If the areas of triangles $ADE$, $BPD$, and $CEP$ are $5$, $8$, and $3$, respectively, find the area of triangle ABC. [b]p7.[/b] Bob has $11$ socks in his drawer: $3$ different matched pairs, and $5$ socks that don’t match with any others. Suppose he pulls socks from the drawer one at a time until he manages to get a matched pair. What is the probability he will need to draw exactly $9$ socks? [b]p8.[/b] Consider the unit cube $ABCDEFGH$. The triangle bound to $A$ is the triangle formed by the $3$ vertices of the cube adjacent to $A$ (and similarly for the other vertices of the cube). Suppose we slice a knife through each of the $8$ triangles bound to vertices of the cube. What is the volume of the remaining solid that contains the former center of the cube? PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1999 IMO Shortlist, 1

Let $n \geq 1$ be an integer. A [b]path[/b] from $(0,0)$ to $(n,n)$ in the $xy$ plane is a chain of consecutive unit moves either to the right (move denoted by $E$) or upwards (move denoted by $N$), all the moves being made inside the half-plane $x \geq y$. A [b]step[/b] in a path is the occurence of two consecutive moves of the form $EN$. Show that the number of paths from $(0,0)$ to $(n,n)$ that contain exactly $s$ steps $(n \geq s \geq 1)$ is \[\frac{1}{s} \binom{n-1}{s-1} \binom{n}{s-1}.\]

2020 USA IMO Team Selection Test, 3

Let $\alpha \geq 1$ be a real number. Hephaestus and Poseidon play a turn-based game on an infinite grid of unit squares. Before the game starts, Poseidon chooses a finite number of cells to be [i]flooded[/i]. Hephaestus is building a [i]levee[/i], which is a subset of unit edges of the grid (called [i]walls[/i]) forming a connected, non-self-intersecting path or loop*. The game then begins with Hephaestus moving first. On each of Hephaestus’s turns, he adds one or more walls to the levee, as long as the total length of the levee is at most $\alpha n$ after his $n$th turn. On each of Poseidon’s turns, every cell which is adjacent to an already flooded cell and with no wall between them becomes flooded as well. Hephaestus wins if the levee forms a closed loop such that all flooded cells are contained in the interior of the loop — hence stopping the flood and saving the world. For which $\alpha$ can Hephaestus guarantee victory in a finite number of turns no matter how Poseidon chooses the initial cells to flood? ----- [size=75]*More formally, there must exist lattice points $\mbox{\footnotesize \(A_0, A_1, \dotsc, A_k\)}$, pairwise distinct except possibly $\mbox{\footnotesize \(A_0 = A_k\)}$, such that the set of walls is exactly $\mbox{\footnotesize \(\{A_0A_1, A_1A_2, \dotsc , A_{k-1}A_k\}\)}$. Once a wall is built it cannot be destroyed; in particular, if the levee is a closed loop (i.e. $\mbox{\footnotesize \(A_0 = A_k\)}$) then Hephaestus cannot add more walls. Since each wall has length $\mbox{\footnotesize \(1\)}$, the length of the levee is $\mbox{\footnotesize \(k\)}$.[/size] [i]Nikolai Beluhov[/i]

KoMaL A Problems 2017/2018, A. 715

Let $a$ and $b$ be positive integers. We tile a rectangle with dimensions $a$ and $b$ using squares whose side-length is a power of $2$, i.e. the tiling may include squares of dimensions $1\times 1, 2\times 2, 4\times 4$ etc. Denote by $M$ the minimal number of squares in such a tiling. Numbers $a$ and $b$ can be uniquely represented as the sum of distinct powers of $2$: $a=2^{a_1}+\cdots+2^{a_k},\; b=2^{b_1}+\cdots +2^{b_\ell}.$ Show that $$M=\sum_{i=1}^k \;\sum_{j=1}^{\ell} 2^{|a_i-b_j|}.$$

2024 Turkey Olympic Revenge, 6

Let $n$ be a positive integer. On a number line, Azer is at point $0$ in his car which have fuel capacity of $2^n$ units and is initially full. At each positive integer $m$, there is a gas station. Azer only moves to the right with constant speed and doesn't stop anywhere except the gas stations. Each time his car moves to the right by some amount, its fuel decreases by the same amount. Azer may choose to stop at a gas station or pass it. There are thieves at some gas stations. (A station may have multiple thieves) If Azer stops at a station which have $k\ge 0$ thieves while its car have fuel capacity $d$, his cars new fuel capacity becomes $\frac{d}{2^k}$. After that, Azer fulls his cars tank and leaves the station. Find the minimum number of thieves needed to guarantee that Azer will eventually run out of fuel. Proposed by[i] Mehmet Can Baştemir[/i] and [i]Deniz Can Karaçelebi[/i]

2017 QEDMO 15th, 12

Jorn wants to cheat at the role play: he intends to cheat the sides to re-label its two octahedra, so that each of the numbers from $1$ to $16$ has the same probability as the sum of the dice occurs. So that the game master does not notice this so easily, he only wants to use numbers from $0$ to $8$ , if necessary several times or not at all. Is this possible?

1992 China Team Selection Test, 2

A $(3n + 1) \times (3n + 1)$ table $(n \in \mathbb{N})$ is given. Prove that deleting any one of its squares yields a shape cuttable into pieces of the following form and its rotations: ''L" shape formed by cutting one square from a $2 \times 2$ squares.

2003 Federal Math Competition of S&M, Problem 4

Let $ n$ be an even number, and $ S$ be the set of all arrays of length $ n$ whose elements are from the set $ \left\{0,1\right\}$. Prove that $ S$ can be partitioned into disjoint three-element subsets such that for each three arrays $ \left(a_i\right)_{i \equal{} 1}^n$, $ \left(b_i\right)_{i \equal{} 1}^n$, $ \left(c_i\right)_{i \equal{} 1}^n$ which belong to the same subset and for each $ i\in\left\{1,2,...,n\right\}$, the number $ a_i \plus{} b_i \plus{} c_i$ is divisible by $ 2$.

2003 Iran MO (2nd round), 2

In a village, there are $n$ houses with $n>2$ and all of them are not collinear. We want to generate a water resource in the village. For doing this, point $A$ is [i]better[/i] than point $B$ if the sum of the distances from point $A$ to the houses is less than the sum of the distances from point $B$ to the houses. We call a point [i]ideal[/i] if there doesn’t exist any [i]better[/i] point than it. Prove that there exist at most $1$ [i]ideal[/i] point to generate the resource.

2002 China Second Round Olympiad, 3

Before The World Cup tournament, the football coach of $F$ country will let seven players, $A_1, A_2, \ldots, A_7$, join three training matches (90 minutes each) in order to assess them. Suppose, at any moment during a match, one and only one of them enters the field, and the total time (which is measured in minutes) on the field for each one of $A_1, A_2, A_3$, and $A_4$ is divisible by $7$ and the total time for each of $A_5, A_6$, and $A_7$ is divisible by $13$. If there is no restriction about the number of substitutions of players during each match, then how many possible cases are there within the total time for every player on the field?