Found problems: 14842
2024 Malaysian Squad Selection Test, 3
Given $n$ students in the plane such that the $\frac{n(n-1)}{2}$ distances are pairwise distinct. Each student gives a candy each to the $k$ students closest to him. Given that each student receives the same amount of candies, determine all possible values of $n$ in terms of $k$.
[i]Proposed by Wong Jer Ren[/i]
2022 Kyiv City MO Round 1, Problem 5
There is a black token in the lower-left corner of a board $m \times n$ ($m, n \ge 3$), and there are white tokens in the lower-right and upper-left corners of this board. Petryk and Vasyl are playing a game, with Petryk playing with a black token and Vasyl with white tokens. Petryk moves first.
In his move, a player can perform the following operation at most two times: choose any his token and move it to any adjacent by side cell, with one restriction: you can't move a token to a cell where at some point was one of the opponents' tokens.
Vasyl wins if at some point of the game white tokens are in the same cell. For which values of $m, n$ can Petryk prevent him from winning?
[i](Proposed by Arsenii Nikolaiev)[/i]
1979 Kurschak Competition, 3
An $n \times n$ array of letters is such that no two rows are the same. Show that it must be possible to omit a column, so that the remaining table has no two rows the same.
1970 All Soviet Union Mathematical Olympiad, 137
Prove that from every set of $200$ integers you can choose a subset of $100$ with the total sum divisible by $100$.
2004 Bulgaria National Olympiad, 4
In a word formed with the letters $a,b$ we can change some blocks: $aba$ in $b$ and back, $bba$ in $a$ and backwards. If the initial word is $aaa\ldots ab$ where $a$ appears 2003 times can we reach the word $baaa\ldots a$, where $a$ appears 2003 times.
2001 USA Team Selection Test, 2
Express \[ \sum_{k=0}^n (-1)^k (n-k)!(n+k)! \] in closed form.
2004 IMO, 3
Define a "hook" to be a figure made up of six unit squares as shown below in the picture, or any of the figures obtained by applying rotations and reflections to this figure.
[asy]
unitsize(0.5 cm);
draw((0,0)--(1,0));
draw((0,1)--(1,1));
draw((2,1)--(3,1));
draw((0,2)--(3,2));
draw((0,3)--(3,3));
draw((0,0)--(0,3));
draw((1,0)--(1,3));
draw((2,1)--(2,3));
draw((3,1)--(3,3));
[/asy]
Determine all $ m\times n$ rectangles that can be covered without gaps and without overlaps with hooks such that
- the rectangle is covered without gaps and without overlaps
- no part of a hook covers area outside the rectangle.
Russian TST 2014, P4
For a natural number $n{},$ determine the number of ordered pairs $(S,T)$ of subsets of $\{1,2,\ldots,n\}$ for which $s>|T|$ for any element $s\in S$ and $t>|S|$ for any element $t\in T.$
2016 IMO Shortlist, C4
Find all integers $n$ for which each cell of $n \times n$ table can be filled with one of the letters $I,M$ and $O$ in such a way that:
[LIST]
[*] in each row and each column, one third of the entries are $I$, one third are $M$ and one third are $O$; and [/*]
[*]in any diagonal, if the number of entries on the diagonal is a multiple of three, then one third of the entries are $I$, one third are $M$ and one third are $O$.[/*]
[/LIST]
[b]Note.[/b] The rows and columns of an $n \times n$ table are each labelled $1$ to $n$ in a natural order. Thus each cell corresponds to a pair of positive integer $(i,j)$ with $1 \le i,j \le n$. For $n>1$, the table has $4n-2$ diagonals of two types. A diagonal of first type consists all cells $(i,j)$ for which $i+j$ is a constant, and the diagonal of this second type consists all cells $(i,j)$ for which $i-j$ is constant.
Russian TST 2018, P2
There are $2^n$ airports, numbered with binary strings of length $n{}$. Any two stations whose numbers differ in exactly one digit are connected by a flight that has a price (which is the same in both directions). The sum of the prices of all $n{}$ flights leaving any station does not exceed 1. Prove that one can travel between any two airports by paying no more than 1.
2022 Polish Junior Math Olympiad Finals, 5.
In the table shown in the figure, Zosia replaced eight numbers with their negatives. It turned out that each row and each column contained exactly two negative numbers. Prove that after this change, the sum of all sixteen numbers in the table is equal to $0$.
[center]
[img]
https://wiki-images.artofproblemsolving.com//2/2e/17-3-5.png
[/img]
[/center]
2018 Romania Team Selection Tests, 3
Let $n > 1$ be a given integer. An $n \times n \times n$ cube is composed of $n^3$ unit cubes. Each unit cube is painted with one colour. For each $n \times n \times 1$ box consisting of $n^2$ unit cubes (in any of the three possible orientations), we consider the set of colours present in that box (each colour is listed only once). This way, we get $3n$ sets of colours, split into three groups according to the orientation.
It happens that for every set in any group, the same set appears in both of the other groups. Determine, in terms of $n$, the maximal possible number of colours that are present.
1997 Belarusian National Olympiad, 3
Does there exist an infinite set $ M$ of straight lines on the coordinate plane such that
(i) no two lines are parallel, and
(ii) for any integer point there is a line from $ M$ containing it?
2000 239 Open Mathematical Olympiad, 8
Given a set of 102 elements. Is it possible to choose 102 17-element subsets so that the intersection of any two subsets contains no more than 3 elements?
2018 BAMO, A
Twenty-five people of different heights stand in a $5\times 5$ grid of squares, with one person in each square. We know that each row has a shortest person, suppose Ana is the tallest of these five people. Similarly, we know that each column has a tallest person, suppose Bev is the shortest of these five people.
Assuming Ana and Bev are not the same person, who is taller: Ana or Bev?
Prove that your answer is always correct.
2021 Taiwan TST Round 3, C
There are $2020$ points on the coordinate plane {$A_i = (x_i, y_i):i = 1, ..., 2020$}, satisfying
$$0=x_1<x_2<...<x_{2020}$$
$$0=y_{2020}<y_{2019}<...<y_1$$
Let $O=(0, 0)$ be the origin, $OA_1A_2...A_{2020}$ forms a polygon $C$.
Now, you want to blacken the polygon $C$. Every time you can choose a point $(x,y)$ with $x, y > 0$, and blacken the area {$(x', y'): 0\leq x' \leq x, 0\leq y' \leq y$}. However, you have to pay $xy$ dollars for doing so.
Prove that you could blacken the whole polygon $C$ by using $4|C|$ dollars. Here, $|C|$ stands for the area of the polygon $C$.
[i]Proposed by me[/i]
2023 Turkey Team Selection Test, 2
There is a school with $n$ students. Suppose that every student has exactly $2023$ friends and every couple of student that are not friends has exactly $2022$ friends in common. Then find all values of $n$
2013 Balkan MO, 4
In a mathematical competition, some competitors are friends; friendship is mutual, that is, when $A$ is a friend of $B$, then $B$ is also a friend of $A$.
We say that $n \geq 3$ different competitors $A_1, A_2, \ldots, A_n$ form a [i]weakly-friendly cycle [/i]if $A_i$ is not a friend of $A_{i+1}$ for $1 \leq i \leq n$ (where $A_{n+1} = A_1$), and there are no other pairs of non-friends among the components of the cycle.
The following property is satisfied:
"for every competitor $C$ and every weakly-friendly cycle $\mathcal{S}$ of competitors not including $C$, the set of competitors $D$ in $\mathcal{S}$ which are not friends of $C$ has at most one element"
Prove that all competitors of this mathematical competition can be arranged into three rooms, such that every two competitors in the same room are friends.
([i]Serbia[/i])
2013 South East Mathematical Olympiad, 4
There are $12$ acrobats who are assigned a distinct number ($1, 2, \cdots , 12$) respectively. Half of them stand around forming a circle (called circle A); the rest form another circle (called circle B) by standing on the shoulders of every two adjacent acrobats in circle A respectively. Then circle A and circle B make up a formation. We call a formation a “[i]tower[/i]” if the number of any acrobat in circle B is equal to the sum of the numbers of the two acrobats whom he stands on. How many heterogeneous [i]towers[/i] are there?
(Note: two [i]towers[/i] are homogeneous if either they are symmetrical or one may become the other one by rotation. We present an example of $8$ acrobats (see attachment). Numbers inside the circle represent the circle A; numbers outside the circle represent the circle B. All these three formations are “[i]towers[/i]”, however they are homogeneous [i]towers[/i].)
1990 Romania Team Selection Test, 8
For a set $S$ of $n$ points, let $d_1 > d_2 >... > d_k > ...$ be the distances between the points.
A function $f_k: S \to N$ is called a [i]coloring function[/i] if, for any pair $M,N$ of points in $S$ with $MN \le d_k$ , it takes the value $f_k(M)+ f_k(N)$ at some point. Prove that for each $m \in N$ there are positive integers $n,k$ and a set $S$ of $n$ points such that every coloring function $f_k$ of $S$ satisfies $| f_k(S)| \le m$
2012 JBMO ShortLists, 1
Along a round table are arranged $11$ cards with the names ( all distinct ) of the $11$ members of the $16^{th}$ JBMO Problem Selection Committee . The cards are arranged in a regular polygon manner . Assume that in the first meeting of the Committee none of its $11$ members sits in front of the card with his name . Is it possible to rotate the table by some angle so that at the end at least two members sit in front of the card with their names ?
II Soros Olympiad 1995 - 96 (Russia), 9.7
$300$ people took part in the drawing for the main prize of the television lottery. They lined up in a circle, then, starting with someone who received number $1$, they began to count them. Moreover, every third person dropped out every time. (So, in the first round, everyone with numbers divisible by $3$ dropped out). The counting continued until there was only one person left. (It is clear that more than one circle was made). This person received the main prize. (It “accidentally” turned out to be the TV director’s mother-in-law). What number did this person have in the initial lineup?
2017 Harvard-MIT Mathematics Tournament, 15
Start by writing the integers $1, 2, 4, 6$ on the blackboard. At each step, write the smallest positive integer $n$ that satisfies both of the following properties on the board.
[list]
[*] $n$ is larger than any integer on the board currently.
[*] $n$ cannot be written as the sum of $2$ distinct integers on the board.
[/list]
Find the $100$-th integer that you write on the board. Recall that at the beginning, there are already $4$ integers on the board.
2003 Korea Junior Math Olympiad, 4
When any $11$ integers are given, prove that you can always choose $6$ integers among them so that the sum of the chosen numbers is a multiple of $6$. The $11$ integers aren't necessarily different.
2000 Denmark MO - Mohr Contest, 3
A [i]Georg Mohr[/i] cube is a cube with six faces printed respectively $G, E, O, R, M$ and $H$. Peter has nine identical Georg Mohr dice. Is it possible to stack them on top of each other for a tower there on each of the four pages in some order show the letters $G\,\, E \,\, O \,\, R \,\, G \,\, M \,\, O \,\, H \,\, R$?