This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2008 Argentina Iberoamerican TST, 1

We have $ 100$ equal cubes. Player $ A$ has to paint the faces of the cubes, each white or black, such that every cube has at least one face of each colour, at least $ 50$ cubes have more than one black face and at least $ 50$ cubes have more than one white face . Player $ B$ has to place the coloured cubes in a table in a way that their bases form the frame that surrounds a $ 40*12$ rectangle. There are some faces that can not been seen because they are overlapped with other faces or based on the table, we call them invisible faces. On the other hand, the ones which can be seen are called visible faces. Prove that player $ B$ can always place the cubes in such a way that the number of visible faces is the the same as the number of invisible faces, despite the initial colouring of player $ A$ Note: It is easy to see that in the configuration, each cube has three visible faces and three invisible faces

2016 IMO Shortlist, C6

There are $n \geq 3$ islands in a city. Initially, the ferry company offers some routes between some pairs of islands so that it is impossible to divide the islands into two groups such that no two islands in different groups are connected by a ferry route. After each year, the ferry company will close a ferry route between some two islands $X$ and $Y$. At the same time, in order to maintain its service, the company will open new routes according to the following rule: for any island which is connected to a ferry route to exactly one of $X$ and $Y$, a new route between this island and the other of $X$ and $Y$ is added. Suppose at any moment, if we partition all islands into two nonempty groups in any way, then it is known that the ferry company will close a certain route connecting two islands from the two groups after some years. Prove that after some years there will be an island which is connected to all other islands by ferry routes.

2021 Cyprus JBMO TST, 3

George plays the following game: At every step he can replace a triple of integers $(x,y,z)$ which is written on the blackboard, with any of the following triples: (i) $(x,z,y)$ (ii) $(-x,y,z)$ (iii) $(x+y,y,2x+y+z)$ (iv) $(x-y,y,y+z-2x)$ Initially, the triple $(1,1,1)$ is written on the blackboard. Determine whether George can, with a sequence of allowed steps, end up at the triple $(2021,2019,2023)$, fully justifying your answer.

2016 Peru IMO TST, 15

Let $n$ be a positive integer. Two players $A$ and $B$ play a game in which they take turns choosing positive integers $k \le n$. The rules of the game are: (i) A player cannot choose a number that has been chosen by either player on any previous turn. (ii) A player cannot choose a number consecutive to any of those the player has already chosen on any previous turn. (iii) The game is a draw if all numbers have been chosen; otherwise the player who cannot choose a number anymore loses the game. The player $A$ takes the first turn. Determine the outcome of the game, assuming that both players use optimal strategies. [i]Proposed by Finland[/i]

2021 STEMS CS Cat A, Q1

Given is a $n\times n$ grid with all squares on one diagonal being forbidden. You are allowed to start from any square, and move one step horizontally, vertically or diagonally. You are not allowed to visit a forbidden square or previously visited square. Your goal is to visit all non forbidden squares. Find, with proof, the minimum number of times you will have to move one step diagonally

2005 Estonia Team Selection Test, 5

On a horizontal line, $2005$ points are marked, each of which is either white or black. For every point, one finds the sum of the number of white points on the right of it and the number of black points on the left of it. Among the $2005$ sums, exactly one number occurs an odd number of times. Find all possible values of this number.

2004 Argentina National Olympiad, 4

Determine all positive integers $a$ and $b$ such that each square on the $a\times b$ board can be colored red, blue, or green such that each red square has exactly one blue neighbor and one green neighbor, each blue square has exactly one red and one green neighbor and each green square has exactly one red and one blue neighbor. Clarification: Two squares are neighbors if they have a common side.

1977 IMO Longlists, 40

The numbers $1, 2, 3,\ldots , 64$ are placed on a chessboard, one number in each square. Consider all squares on the chessboard of size $2 \times 2.$ Prove that there are at least three such squares for which the sum of the $4$ numbers contained exceeds $100.$

2016 Dutch BxMO TST, 4

The Facebook group Olympiad training has at least five members. There is a certain integer $k$ with following property: [i]for each $k$-tuple of members there is at least one member of this $k$-tuple friends with each of the other $k - 1$.[/i] (Friendship is mutual: if $A$ is friends with $B$, then also $B$ is friends with $A$.) (a) Suppose $k = 4$. Can you say with certainty that the Facebook group has a member that is friends with each of the other members? (b) Suppose $k = 5$. Can you say with certainty that the Facebook group has a member that is friends with each of the other members?

2003 Balkan MO, 4

A rectangle $ABCD$ has side lengths $AB = m$, $AD = n$, with $m$ and $n$ relatively prime and both odd. It is divided into unit squares and the diagonal AC intersects the sides of the unit squares at the points $A_1 = A, A_2, A_3, \ldots , A_k = C$. Show that \[ A_1A_2 - A_2A_3 + A_3A_4 - \cdots + A_{k-1}A_k = {\sqrt{m^2+n^2}\over mn}. \]

2018 Azerbaijan Senior NMO, 4

Numbers $1,2,3...,100$ are written on a board. $A$ and $B$ plays the following game: They take turns choosing a number from the board and deleting them. $A$ starts first. They sum all the deleted numbers. If after a player's turn (after he deletes a number on the board) the sum of the deleted numbers can't be expressed as difference of two perfect squares,then he loses, if not, then the game continues as usual. Which player got a winning strategy?

2007 Polish MO Finals, 3

3. Plane is divided with horizontal and vertical lines into unit squares. Into each square we write a positive integer so that each positive integer appears exactly once. Determine whether it is possible to write numbers in such a way, that each written number is a divisor of a sum of its four neighbours.

IMSC 2024, 4

Ana plays a game on a $100\times 100$ chessboard. Initially, there is a white pawn on each square of the bottom row and a black pawn on each square of the top row, and no other pawns anywhere else.\\ Each white pawn moves toward the top row and each black pawn moves toward the bottom row in one of the following ways: [list] [*] it moves to the square directly in front of it if there is no other pawn on it; [*] it [b]captures[/b] a pawn on one of the diagonally adjacent squares in the row immediately in front of it if there is a pawn of the opposite color on it. [/list] (We say a pawn $P$ [b]captures[/b] a pawn $Q$ of the opposite color if we remove $Q$ from the board and move $P$ to the square that $Q$ was previously on.)\\ \\ Ana can move any pawn (not necessarily alternating between black and white) according to those rules. What is the smallest number of pawns that can remain on the board after no more moves can be made? [i]Proposed by José Alejandro Reyes González, Mexico[/i]

2013 Czech And Slovak Olympiad IIIA, 2

Each of the thieves in the $n$-member party ($n \ge 3$) charged a certain number of coins. All the coins were $100n$. Thieves decided to share their prey as follows: at each step, one of the bandits puts one coin to the other two. Find them all natural numbers $n \ge 3$ for which after a finite number of steps each outlaw can have $100$ coins no matter how many coins each thug has charged.

2016 China Team Selection Test, 6

Let $m,n$ be naturals satisfying $n \geq m \geq 2$ and let $S$ be a set consisting of $n$ naturals. Prove that $S$ has at least $2^{n-m+1}$ distinct subsets, each whose sum is divisible by $m$. (The zero set counts as a subset).

2017 Balkan MO Shortlist, C1

A grasshopper is sitting at an integer point in the Euclidean plane. Each second it jumps to another integer point in such a way that the jump vector is constant. A hunter that knows neither the starting point of the grasshopper nor the jump vector (but knows that the jump vector for each second is constant) wants to catch the grasshopper. Each second the hunter can choose one integer point in the plane and, if the grasshopper is there, he catches it. Can the hunter always catch the grasshopper in a finite amount of time?

2008 Bulgarian Autumn Math Competition, Problem 9.4

Stoyan and Nikolai have two $100\times 100$ chess boards. Both of them number each cell with the numbers $1$ to $10000$ in some way. Is it possible that for every two numbers $a$ and $b$, which share a common side in Nikolai's board, these two numbers are at a knight's move distance in Stoyan's board (that is, a knight can move from one of the cells to the other one with a move)? [i]Nikolai Beluhov[/i]

1991 All Soviet Union Mathematical Olympiad, 549

An $h \times k$ minor of an $n \times n$ table is the $hk$ cells which lie in $h$ rows and $k$ columns. The semiperimeter of the minor is $h + k$. A number of minors each with semiperimeter at least $n$ together include all the cells on the main diagonal. Show that they include at least half the cells in the table.

2023 ELMO Shortlist, C3

Find all pairs of positive integers \((a,b)\) with the following property: there exists an integer \(N\) such that for any integers \(m\ge N\) and \(n\ge N\), every \(m\times n\) grid of unit squares may be partitioned into \(a\times b\) rectangles and fewer than \(ab\) unit squares. [i]Proposed by Holden Mui[/i]

2004 Tournament Of Towns, 5

Two 10-digit integers are called neighbours if they differ in exactly one digit (for example, integers $1234567890$ and $1234507890$ are neighbours). Find the maximal number of elements in the set of 10-digit integers with no two integers being neighbours.

2019 Belarus Team Selection Test, 2.3

$1019$ stones are placed into two non-empty boxes. Each second Alex chooses a box with an even amount of stones and shifts half of these stones into another box. Prove that for each $k$, $1\le k\le1018$, at some moment there will be a box with exactly $k$ stones. [i](O. Izhboldin)[/i]

2017 AIME Problems, 12

Call a set $S$ [i]product-free[/i] if there do not exist $a, b, c \in S$ (not necessarily distinct) such that $a b = c$. For example, the empty set and the set $\{16, 20\}$ are product-free, whereas the sets $\{4, 16\}$ and $\{2, 8, 16\}$ are not product-free. Find the number of product-free subsets of the set $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$.

2018 Argentina National Olympiad, 3

You have a $7\times 7$ board divided into $49$ boxes. Mateo places a coin in a box. a) Prove that Mateo can place the coin so that it is impossible for Emi to completely cover the $48$ remaining squares, without gaps or overlaps, using $15$ $3\times1$ rectangles and a cubit of three squares, like those in the figure. [img]https://cdn.artofproblemsolving.com/attachments/6/9/a467439094376cd95c6dfe3e2ad3e16fe9f124.png[/img] b) Prove that no matter which square Mateo places the coin in, Emi will always be able to cover the 48 remaining squares using $14$ $3\times1$ rectangles and two cubits of three squares.

LMT Team Rounds 2021+, 15

There are $28$ students who have to be separated into two groups such that the number of students in each group is a multiple of $4$. The number of ways to split them into the groups can be written as $$\sum_{k \ge 0} 2^k a_k = a_0 +2a_1 +4a_2 +...$$ where each $a_i$ is either $0$ or $1$. Find the value of $$\sum_{k \ge 0} ka_k = 0+ a_1 +2a_2 +3a3_ +....$$

2022 Iran MO (3rd Round), 5

Ali has $100$ cards with numbers $1,2,\ldots,100$. Ali and Amin play a game together. In each step, first Ali chooses a card from the remaining cards and Amin decides to pick that card for himself or throw it away. In the case that he picks the card, he can't pick the next card chosen by Amin, and he has to throw it away. This action repeats until when there is no remaining card for Ali. Amin wants to pick cards in a way that the sum of the number of his cards is maximized and Ali wants to choose cards in a way that the sum of the number of Amin's cards is minimized. Find the most value of $k$ such that Amin can play in a way that is sure the sum of the number of his cards will be at least equal to $k$.