This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2008 India National Olympiad, 4

All the points with integer coordinates in the $ xy$-Plane are coloured using three colours, red, blue and green, each colour being used at least once. It is known that the point $ (0,0)$ is red and the point $ (0,1)$ is blue. Prove that there exist three points with integer coordinates of distinct colours which form the vertices of a right-angled triangle.

2021 JBMO TST - Turkey, 3

In a country, there are $28$ cities and between some cities there are two-way flights. In every city there is exactly one airport and this airport is either small or medium or big. For every route which contains more than two cities, doesn't contain a city twice and ends where it begins; has all types of airports. What is the maximum number of flights in this country?

LMT Team Rounds 2021+, 11

The LHS Math Team is going to have a Secret Santa event! Nine members are going to participate, and each person must give exactly one gift to a specific recipient so that each person receives exactly one gift. But to make it less boring, no pairs of people can just swap gifts. The number of ways to assign who gives gifts to who in the Secret Santa Exchange with these constraints is $N$. Find the remainder when $N$ is divided by $1000$.

ABMC Online Contests, 2021 Oct

[b]p1.[/b] How many perfect squares are in the set: $\{1, 2, 4, 9, 10, 16, 17, 25, 36, 49\}$? [b]p2.[/b] If $a \spadesuit b = a^b - ab - 5$, what is the value of $2 \spadesuit 11$? [b]p3.[/b] Joe can catch $20$ fish in $5$ hours. Jill can catch $35$ fish in $7$ hours. If they work together, and the number of days it takes them to catch $900$ fish is represented by $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers, what is $m + n$? Assume that they work at a constant rate without taking breaks and that there are an infinite number of fish to catch. [b]p4.[/b] What is the units digit of $187^{10}$? [b]p5.[/b] What is the largest number of regions we can create by drawing $4$ lines in a plane? [b]p6.[/b] A regular hexagon is inscribed in a circle. If the area of the circle is $2025\pi$, given that the area of the hexagon can be expressed as $\frac{a\sqrt{b}}{c}$ for positive integers $a$, $b$, $c$ where $gcd(a, c) = 1$ and $b$ is not divisible by the square of any number other than $1$, find $a + b + c$. [b]p7.[/b] Find the number of trailing zeroes in the product $3! \cdot 5! \cdot 719!$. [b]p8.[/b] How many ordered triples $(x, y, z)$ of odd positive integers satisfy $x + y + z = 37$? [b]p9.[/b] Let $N$ be a number with $2021$ digits that has a remainder of $1$ when divided by $9$. $S(N)$ is the sum of the digits of $N$. What is the value of $S(S(S(S(N))))$? [b]p10.[/b] Ayana rolls a standard die $10$ times. If the probability that the sum of the $10$ die is divisible by $6$ is $\frac{m}{n}$ for relatively prime positive integers $m$, $n$, what is $m + n$? [b]p11.[/b] In triangle $ABC$, $AB=13$, $BC=14$, and $CA=15$. The inscribed circle touches the side $BC$ at point $D$. The line $AI$ intersects side $BC$ at point $K$ given that $I$ is the incenter of triangle $ABC$. What is the area of the triangle $KID$? [b]p12.[/b] Given the cubic equation $2x^3+8x^2-42x-188$, with roots $a, b, c$, evaluate $|a^2b+a^2c+ab^2+b^2c+c^2a+bc^2|$. [b]p13.[/b] In tetrahedron $ABCD$, $AB=6$, $BC=8$, $CA=10$, and $DA$, $DB$, $DC=20$. If the volume of $ABCD$ is $a\sqrt{b}$ where $a$, $b$ are positive integers and in simplified radical form, what is $a + b$? [b]p14.[/b] A $2021$-digit number starts with the four digits $2021$ and the rest of the digits are randomly chosen from the set $0$,$1$,$2$,$3$,$4$,$5$,$6$. If the probability that the number is divisible by $14$ is $\frac{m}{n}$ for relatively prime positive integers $m$, $n$. what is $m + n$? [b]p15.[/b] Let $ABCD$ be a cyclic quadrilateral with circumcenter $O_1$ and circumradius $20$, Let the intersection of $AC$ and $BD$ be $E$. Let the circumcenter of $\vartriangle EDC$ be $O_2$. Given that the circumradius of 4EDC is $13$; $O_1O_2 = 11$, $BE = 11 \sqrt2$, find $O_1E^2$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2023 SG Originals, Q3

Bugs Bunny plays a game in the Euclidean plane. At the $n$-th minute $(n \geq 1)$, Bugs Bunny hops a distance of $F_n$ in the North, South, East, or West direction, where $F_n$ is the $n$-th Fibonacci number (defined by $F_1 = F_2 =1$ and $F_n = F_{n-1} + F_{n-2}$ for $n \geq 3$). If the first two hops were perpendicular, prove that Bugs Bunny can never return to where he started. [i]Proposed by Dylan Toh[/i]

2024 International Zhautykov Olympiad, 5

We are given $m\times n$ table tiled with $3\times 1$ stripes and we are given that $6 | mn$. Prove that there exists a tiling of the table with $2\times 1$ dominoes such that each of these stripes contains one whole domino.

2018 Estonia Team Selection Test, 2

Find the greatest number of depicted pieces composed of $4$ unit squares that can be placed without overlapping on an $n \times n$ grid (where n is a positive integer) in such a way that it is possible to move from some corner to the opposite corner via uncovered squares (moving between squares requires a common edge). The shapes can be rotated and reflected. [img]https://cdn.artofproblemsolving.com/attachments/b/d/f2978a24fdd737edfafa5927a8d2129eb586ee.png[/img]

1987 IMO Shortlist, 17

Prove that there exists a four-coloring of the set $M = \{1, 2, \cdots, 1987\}$ such that any arithmetic progression with $10$ terms in the set $M$ is not monochromatic. [b][i]Alternative formulation[/i][/b] Let $M = \{1, 2, \cdots, 1987\}$. Prove that there is a function $f : M \to \{1, 2, 3, 4\}$ that is not constant on every set of $10$ terms from $M$ that form an arithmetic progression. [i]Proposed by Romania[/i]

2021 VIASM Math Olympiad Test, Problem 3

Given the positive integer $n$. Let $X = \{1, 2,..., n\}$. For each nonempty subset $A$ of $X$, set $r(A) = max_A - min_A$, where $max_A, min_A$ are the greatest and smallest elements of $A$, respectively. Find the mean value of $r(A)$ when $A$ runs on subsets of $X$.

2024 ELMO Shortlist, C2

Let $n$ be a fixed positive integer. Ben is playing a computer game. The computer picks a tree $T$ such that no vertex of $T$ has degree $2$ and such that $T$ has exactly $n$ leaves, labeled $v_1,\ldots, v_n$. The computer then puts an integer weight on each edge of $T$, and shows Ben neither the tree $T$ nor the weights. Ben can ask queries by specifying two integers $1\leq i < j \leq n$, and the computer will return the sum of the weights on the path from $v_i$ to $v_j$. At any point, Ben can guess whether the tree's weights are all zero. He wins the game if he is correct, and loses if he is incorrect. (a) Show that if Ben asks all $\binom n2$ possible queries, then he can guarantee victory. (b) Does Ben have a strategy to guarantee victory in less than $\binom n2$ queries? [i]Brandon Wang[/i]

2009 Switzerland - Final Round, 8

Given is a floor plan composed of $n$ unit squares. Albert and Berta want to cover this floor with tiles, with all tiles having the shape of a $1\times 2$ domino or a $T$-tetromino. Albert only has tiles from one color, while Berta has two-color dominoes and tetrominoes available in four colors. Albert can use this floor plan in $a$ ways to cover tiles, Berta in $ b$ ways. Assuming that $a \ne 0$, determine the ratio $b/a$.

2013 All-Russian Olympiad, 4

On a $55\times 55$ square grid, $500$ unit squares were cut out as well as $400$ L-shaped pieces consisting of 3 unit squares (each piece can be oriented in any way) [refer to the figure]. Prove that at least two of the cut out pieces bordered each other before they were cut out. [asy]size(2.013cm); draw ((0,0)--(0,1)); draw ((0,0)--(1,0)); draw ((0,1)--(.5,1)); draw ((.5,1)--(.5,0)); draw ((0,.5)--(1,.5)); draw ((1,.5)--(1,0)); draw ((1,.5)--(1,0)); [/asy]

2008 Kyiv Mathematical Festival, 2

Aladdin has a set of coins with weights $ 1, 2, \ldots, 20$ grams. He can ask Genie about any two coins from the set which one is heavier, but he should pay Genie some other coin from the set before. (So, with every question the set of coins becomes smaller.) Can Aladdin find two coins from the set with total weight at least $ 28$ grams?

2024 Germany Team Selection Test, 1

Determine the maximal length $L$ of a sequence $a_1,\dots,a_L$ of positive integers satisfying both the following properties: [list=disc] [*]every term in the sequence is less than or equal to $2^{2023}$, and [*]there does not exist a consecutive subsequence $a_i,a_{i+1},\dots,a_j$ (where $1\le i\le j\le L$) with a choice of signs $s_i,s_{i+1},\dots,s_j\in\{1,-1\}$ for which \[s_ia_i+s_{i+1}a_{i+1}+\dots+s_ja_j=0.\] [/list]

MBMT Guts Rounds, 2022

[hide=D stands for Dedekind, Z stands for Zermelo]they had two problem sets under those two names[/hide] [u]Set 1[/u] [b]D1 / Z1.[/b] What is $1 + 2 \cdot 3$? [b]D2.[/b] What is the average of the first $9$ positive integers? [b]D3 / Z2.[/b] A square of side length $2$ is cut into $4$ congruent squares. What is the perimeter of one of the $4$ squares? [b]D4.[/b] Find the ratio of a circle’s circumference squared to the area of the circle. [b]D5 / Z3.[/b] $6$ people split a bag of cookies such that they each get $21$ cookies. Kyle comes and demands his share of cookies. If the $7$ people then re-split the cookies equally, how many cookies does Kyle get? [u]Set 2[/u] [b]D6.[/b] How many prime numbers are perfect squares? [b]D7.[/b] Josh has an unfair $4$-sided die numbered $1$ through $4$. The probability it lands on an even number is twice the probability it lands on an odd number. What is the probability it lands on either $1$ or $3$? [b]D8.[/b] If Alice consumes $1000$ calories every day and burns $500$ every night, how many days will it take for her to first reach a net gain of $5000$ calories? [b]D9 / Z4.[/b] Blobby flips $4$ coins. What is the probability he sees at least one heads and one tails? [b]D10.[/b] Lillian has $n$ jars and $48$ marbles. If George steals one jar from Lillian, she can fill each jar with $8$ marbles. If George steals $3$ jars, Lillian can fill each jar to maximum capacity. How many marbles can each jar fill? [u]Set 3[/u] [b]D11 / Z6.[/b] How many perfect squares less than $100$ are odd? [b]D12.[/b] Jash and Nash wash cars for cash. Jash gets $\$6$ for each car, while Nash gets $\$11$ per car. If Nash has earned $\$1$ more than Jash, what is the least amount of money that Nash could have earned? [b]D13 / Z5.[/b] The product of $10$ consecutive positive integers ends in $3$ zeros. What is the minimum possible value of the smallest of the $10$ integers? [b]D14 / Z7.[/b] Guuce continually rolls a fair $6$-sided dice until he rolls a $1$ or a $6$. He wins if he rolls a $6$, and loses if he rolls a $1$. What is the probability that Guuce wins? [b]D15 / Z8.[/b] The perimeter and area of a square with integer side lengths are both three digit integers. How many possible values are there for the side length of the square? PS. You should use hide for answers. D.16-30/Z.9-14, 17, 26-30 problems have been collected [url=https://artofproblemsolving.com/community/c3h2916250p26045695]here [/url]and Z.15-25 [url=https://artofproblemsolving.com/community/c3h2916258p26045774]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2004 Irish Math Olympiad, 5

Suppose $p,q$ are distinct primes and $S$ is a subset of $\{1,2,\dots ,p-1\}$. Let $N(S)$ denote the number of solutions to the equation $$\sum_{i=1}^{q}x_i\equiv 0\mod p$$ where $x_i\in S$, $i=1,2,\dots ,q$. Prove that $N(S)$ is a multiple of $q$.

2023 Polish MO Finals, 3

Given a positive integer $n \geq 2$ and real numbers $a_1, a_2, \ldots, a_n \in [0,1]$. Prove that there exist real numbers $b_1, b_2, \ldots, b_n \in \{0,1\}$, such that for all $1\leq k\leq l \leq n$ we have $$\left| \sum_{i=k}^l (a_i-b_i)\right| \leq \frac{n}{n+1}.$$

2005 Kazakhstan National Olympiad, 3

Exactly one number from the set $\{ -1,0,1 \}$ is written in each unit cell of a $2005 \times 2005$ table, so that the sum of all the entries is $0$. Prove that there exist two rows and two columns of the table, such that the sum of the four numbers written at the intersections of these rows and columns is equal to $0$.

2024 Benelux, 2

Let $n$ be a positive integer. In a coordinate grid, a path from $(0,0)$ to $(2n,2n)$ consists of $4n$ consecutive unit steps $(1,0)$ or $(0,1)$. Prove that the number of paths that divide the square with vertices $(0,0),(2n,0),(2n,2n),(0,2n)$ into 2 regions with even areas is $$\frac{{4n \choose 2n} + {2n \choose n}}{2}$$

2016 JBMO Shortlist, 1

Let $S_n$ be the sum of reciprocal values of non-zero digits of all positive integers up to (and including) $n$. For instance, $S_{13} = \frac{1}{1}+ \frac{1}{2}+ \frac{1}{3}+ \frac{1}{4}+ \frac{1}{5}+ \frac{1}{6}+ \frac{1}{7}+ \frac{1}{8}+ \frac{1}{9}+ \frac{1}{1}+ \frac{1}{1}+ \frac{1}{1}+ \frac{1}{1}+ \frac{1}{2}+ \frac{1}{1}+ \frac{1}{3}$ . Find the least positive integer $k$ making the number $k!\cdot S_{2016}$ an integer.

2021 All-Russian Olympiad, 8

Each girl among $100$ girls has $100$ balls; there are in total $10000$ balls in $100$ colors, from each color there are $100$ balls. On a move, two girls can exchange a ball (the first gives the second one of her balls, and vice versa). The operations can be made in such a way, that in the end, each girl has $100$ balls, colored in the $100$ distinct colors. Prove that there is a sequence of operations, in which each ball is exchanged no more than 1 time, and at the end, each girl has $100$ balls, colored in the $100$ colors.

2023 IMC, 5

Fix positive integers $n$ and $k$ such that $2 \le k \le n$ and a set $M$ consisting of $n$ fruits. A [i]permutation[/i] is a sequence $x=(x_1,x_2,\ldots,x_n)$ such that $\{x_1,\ldots,x_n\}=M$. Ivan [i]prefers[/i] some (at least one) of these permutations. He realized that for every preferred permutation $x$, there exist $k$ indices $i_1 < i_2 < \ldots < i_k$ with the following property: for every $1 \le j < k$, if he swaps $x_{i_j}$ and $x_{i_{j+1}}$, he obtains another preferred permutation. \\ Prove that he prefers at least $k!$ permutations.

2007 Vietnam Team Selection Test, 6

Let $A_{1}A_{2}\ldots A_{9}$ be a regular $9-$gon. Let $\{A_{1},A_{2},\ldots,A_{9}\}=S_{1}\cup S_{2}\cup S_{3}$ such that $|S_{1}|=|S_{2}|=|S_{3}|=3$. Prove that there exists $A,B\in S_{1}$, $C,D\in S_{2}$, $E,F\in S_{3}$ such that $AB=CD=EF$ and $A \neq B$, $C\neq D$, $E\neq F$.

2022 Romania EGMO TST, P2

On a board there is a regular polygon $A_1A_2\ldots A_{99}.$ Ana and Barbu alternatively occupy empty vertices of the polygon and write down triangles on a list: Ana only writes obtuse triangles, while Barbu only writes acute ones. At the first turn, Ana chooses three vertices $X,Y$ and $Z$ and writes down $\triangle XYZ.$ Then, Barbu chooses two of $X,Y$ and $Z,$ for example $X$ and $Y$, and an unchosen vertex $T$, and writes down $\triangle XYT.$ The game goes on and at each turn, the player must choose a new vertex $R$ and write down $\triangle PQR$, where $P$ is the last vertex chosen by the other player, and $Q$ is one of the other vertices of the last triangle written down by the other player. If one player cannot perform a move, then the other one wins. If both people play optimally, determine who has a winning strategy.

2009 IMO Shortlist, 4

For an integer $m\geq 1$, we consider partitions of a $2^m\times 2^m$ chessboard into rectangles consisting of cells of chessboard, in which each of the $2^m$ cells along one diagonal forms a separate rectangle of side length $1$. Determine the smallest possible sum of rectangle perimeters in such a partition. [i]Proposed by Gerhard Woeginger, Netherlands[/i]