This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

LMT Guts Rounds, 2015

[u]Round 5[/u] [b]p13.[/b] Sally is at the special glasses shop, where there are many different optical lenses that distort what she sees and cause her to see things strangely. Whenever she looks at a shape through lens $A$, she sees a shape with $2$ more sides than the original (so a square would look like a hexagon). When she looks through lens $B$, she sees the shape with $3$ fewer sides (so a hexagon would look like a triangle). How many sides are in the shape that has $200$ more diagonals when looked at from lense $A$ than from lense $B$? [b]p14.[/b] How many ways can you choose $2$ cells of a $5$ by $5$ grid such that they aren't in the same row or column? [b]p15.[/b] If $a + \frac{1}{b} = (2015)^{-1}$ and $b + \frac{1}{a} = (2016)^2$ then what are all the possible values of $b$? [u]Round 6[/u] [b]p16.[/b] In Canadian football, linebackers must wear jersey numbers from $30 -35$ while defensive linemen must wear numbers from $33 -38$ (both intervals are inclusive). If a team has $5$ linebackers and $4$ defensive linemen, how many ways can it assign jersey numbers to the $9$ players such that no two people have the same jersey number? [b]p17.[/b] What is the maximum possible area of a right triangle with hypotenuse $8$? [b]p18.[/b] $9$ people are to play touch football. One will be designated the quarterback, while the other eight will be divided into two (indistinct) teams of $4$. How many ways are there for this to be done? [u]Round 7[/u] [b]p19.[/b] Express the decimal $0.3$ in base $7$. [b]p20.[/b] $2015$ people throw their hats in a pile. One at a time, they each take one hat out of the pile so that each has a random hat. What is the expected number of people who get their own hat? [b]p21.[/b] What is the area of the largest possible trapezoid that can be inscribed in a semicircle of radius $4$? [u]Round 8[/u] [b]p22.[/b] What is the base $7$ expression of $1211_3 \cdot 1110_2 \cdot 292_{11} \cdot 20_3$ ? [b]p23.[/b] Let $f(x)$ equal the ratio of the surface area of a sphere of radius $x$ to the volume of that same sphere. Let $g(x)$ be a quadratic polynomial in the form $x^2 + bx + c$ with $g(6) = 0$ and the minimum value of $g(x)$ equal to $c$. Express $g(x)$ as a function of $f(x)$ (e.g. in terms of $f(x)$). [b]p24.[/b] In the country of Tahksess, the income tax code is very complicated. Citizens are taxed $40\%$ on their first $\$20, 000$ and $45\%$ on their next $\$40, 000$ and $50\%$ on their next $\$60, 000$ and so on, with each $5\%$ increase in tax rate a ecting $\$20, 000$ more than the previous tax rate. The maximum tax rate, however, is $90\%$. What is the overall tax rate (percentage of money owed) on $1$ million dollars in income? PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h3157009p28696627]here [/url] and 9-12 [url=https://artofproblemsolving.com/community/c3h3158564p28715928]here[/url]. .Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2014 Gulf Math Olympiad, 2

Ahmad and Salem play the following game. Ahmad writes two integers (not necessarily different) on a board. Salem writes their sum and product. Ahmad does the same thing: he writes the sum and product of the two numbers which Salem has just written. They continue in this manner, not stopping unless the two players write the same two numbers one after the other (for then they are stuck!). The order of the two numbers which each player writes is not important. Thus if Ahmad starts by writing $3$ and $-2$, the first five moves (or steps) are as shown: (a) Step 1 (Ahmad) $3$ and $-2$ (b) Step 2 (Salem) $1$ and $-6$ (c) Step 3 (Ahmad) $-5$ and $-6$ (d) Step 4 (Salem) $-11$ and $30$ (e) Step 5 (Ahmad) $19$ and $-330$ (i) Describe all pairs of numbers that Ahmad could write, and ensure that Salem must write the same numbers, and so the game stops at step 2. (ii) What pair of integers should Ahmad write so that the game finishes at step 4? (iii) Describe all pairs of integers which Ahmad could write at step 1, so that the game will finish after finitely many steps. (iv) Ahmad and Salem decide to change the game. The first player writes three numbers on the board, $u, v$ and $w$. The second player then writes the three numbers $u + v + w,uv + vw + wu$ and $uvw$, and they proceed as before, taking turns, and using this new rule describing how to work out the next three numbers. If Ahmad goes first, determine all collections of three numbers which he can write down, ensuring that Salem has to write the same three numbers at the next step.

2000 China Team Selection Test, 2

Given positive integers $k, m, n$ such that $1 \leq k \leq m \leq n$. Evaluate \[\sum^{n}_{i=0} \frac{(-1)^i}{n+k+i} \cdot \frac{(m+n+i)!}{i!(n-i)!(m+i)!}.\]

2010 Junior Balkan Team Selection Tests - Romania, 4

The plan considers $51$ points of integer coordinates, so that the distances between any two points are natural numbers. Show that at least $49\%$ of the distances are even.

2008 IMAC Arhimede, 6

Consider the set of natural numbers $ U = \{1,2,3, ..., 6024 \} $ Prove that for any partition of the $ U $ in three subsets with $ 2008 $ elements each, we can choose a number in each subset so that one of the numbers is the sum of the other two numbers.

2023 Chile Junior Math Olympiad, 5

$1600$ bananas are distributed among $100$ monkeys (it is possible that some monkeys do not receive bananas). Prvove that at least four monkeys receive the same amount of bananas.

2001 Poland - Second Round, 3

For a positive integer $n$, let $A_n$ and $B_n$ be the families of $n$-element subsets of $S_n=\{1,2,\ldots ,2n\}$ with respectively even and odd sums of elements. Compute $|A_n|-|B_n|$.

2023 Argentina National Olympiad Level 2, 6

There is a row of $n$ chairs, numbered in order from left to right from $1$ to $n$. Additionally, the $n$ numbers from $1$ to $n$ are distributed on the backs of the chairs, one number per chair, such that the number on the back of a chair never matches the number of the chair itself. There is a child sitting on each chair. Every time the teacher claps, each child checks the number on the back of the chair they are sitting on and moves to the chair corresponding to that number. Prove that for any $m$ that is not a power of a prime, with $1 < m \leqslant n$, it is possible to distribute the numbers on the backrests such that, after the teacher claps $m$ times, for the first time, all the children are sitting in the chairs where they initially started. (During the process, it may happen that some children return to their original chairs, but they do not all do so simultaneously until the $m^{\text{th}}$ clap.)

2024 All-Russian Olympiad Regional Round, 9.3

Knights, who always tell truth, and liars, who always lie, live on an island. They have been distributed into two teams $A$ and $B$ for a game of tennis, and team $A$ had more members than team $B$. Two players from different teams started the game, whenever a player loses the game, he leaves it forever and he is replaces by a member of his team (that has never played before). The team, all of whose members left the game, loses. After the tournament, every member of team $A$ was asked: "Is it true that you have lost to a liar in some game?", and every member of team $B$ was asked: "Is it true that you have won at least two games, in which your opponent was a knight?". It turns out that every single answer was positive. Which team won?

1997 Singapore Team Selection Test, 2

For any positive integer n, evaluate $$\sum_{i=0}^{\lfloor \frac{n+1}{2} \rfloor} {n-i+1 \choose i}$$ , where $\lfloor n \rfloor$ is the greatest integer less than or equal to $n$ .

1987 IMO Longlists, 36

A game consists in pushing a flat stone along a sequence of squares $S_0, S_1, S_2, . . .$ that are arranged in linear order. The stone is initially placed on square $S_0$. When the stone stops on a square $S_k$ it is pushed again in the same direction and so on until it reaches $S_{1987}$ or goes beyond it; then the game stops. Each time the stone is pushed, the probability that it will advance exactly $n$ squares is $\frac{1}{2^n}$. Determine the probability that the stone will stop exactly on square $S_{1987}.$

2019 Caucasus Mathematical Olympiad, 4

Vova has a square grid $72\times 72$. Unfortunately, $n$ cells are stained with coffee. Determine if Vova always can cut out a clean square $3\times 3$ without its central cell, if a) $n=699$; b) $n=750$.

2000 Brazil Team Selection Test, Problem 3

Consider an equilateral triangle with every side divided by $n$ points into $n+1$ equal parts. We put a marker on every of the $3n$ division points. We draw lines parallel to the sides of the triangle through the division points, and this way divide the triangle into $(n+1)^2$ smaller ones. Consider the following game: if there is a small triangle with exactly one vertex unoccupied, we put a marker on it and simultaneously take markers from the two its occupied vertices. We repeat this operation as long as it is possible. (a) If $n\equiv1\pmod3$, show that we cannot manage that only one marker remains. (b) If $n\equiv0$ or $n\equiv2\pmod3$, prove that we can finish the game leaving exactly one marker on the triangle.

2010 IFYM, Sozopol, 5

Each vertex of a right $n$-gon $(n\geq 3)$ is colored in yellow, blue or red. On each turn are chosen two adjacent vertices in different color and then are recolored in the third. For which $n$ can we get from an arbitrary coloring of the $n$-gon a monochromatic one (in one color)?

2015 Vietnam Team selection test, Problem 4

There are $100$ students who praticipate at exam.Also there are $25$ members of jury.Each student is checked by one jury.Known that every student likes $10$ jury $a)$ Prove that we can select $7$ jury such that any student likes at least one jury. $b)$ Prove that we can make this every student will be checked by the jury that he likes and every jury will check at most $10$ students.

Math Hour Olympiad, Grades 8-10, 2010

[u]Round 1 [/u] [b]p1.[/b] In the convex quadrilateral $ABCD$ with diagonals $AC$ and $BD$, you know that angle $BAC$ is congruent to angle $CBD$, and that angle $ACD$ is congruent to angle $ADB$. Show that angle $ABC$ is congruent to angle $ADC$. [img]https://cdn.artofproblemsolving.com/attachments/5/d/41cd120813d5541dc73c5d4a6c86cc82747fcc.png[/img] [b]p2.[/b] In how many different ways can you place $12$ chips in the squares of a $4 \times 4$ chessboard so that (a) there is at most one chip in each square, and (b) every row and every column contains exactly three chips. [b]p3.[/b] Students from Hufflepuff and Ravenclaw were split into pairs consisting of one student from each house. The pairs of students were sent to Honeydukes to get candy for Father's Day. For each pair of students, either the Hufflepuff student brought back twice as many pieces of candy as the Ravenclaw student or the Ravenclaw student brought back twice as many pieces of candy as the Hufflepuff student. When they returned, Professor Trelawney determined that the students had brought back a total of $1000$ pieces of candy. Could she have possibly been right? Why or why not? Assume that candy only comes in whole pieces (cannot be divided into parts). [b]p4.[/b] While you are on a hike across Deception Pass, you encounter an evil troll, who will not let you across the bridge until you solve the following puzzle. There are six stones, two colored red, two colored yellow, and two colored green. Aside from their colors, all six stones look and feel exactly the same. Unfortunately, in each colored pair, one stone is slightly heavier than the other. Each of the lighter stones has the same weight, and each of the heavier stones has the same weight. Using a balance scale to make TWO measurements, decide which stone of each color is the lighter one. [b]p5.[/b] Alex, Bob and Chad are playing a table tennis tournament. During each game, two boys are playing each other and one is resting. In the next game the boy who lost a game goes to rest, and the boy who was resting plays the winner. By the end of tournament, Alex played a total of $10$ games, Bob played $15$ games, and Chad played $17$ games. Who lost the second game? [u]Round 2 [/u] [b]p6.[/b] Consider a set of finitely many points on the plane such that if we choose any three points $A,B,C$ from the set, then the area of the triangle $ABC$ is less than $1$. Show that all of these points can be covered by a triangle whose area is less than $4$. [b]p7.[/b] A palindrome is a number that is the same when read forward and backward. For example, $1771$ and $23903030932$ are palindromes. Can the number obtained by writing the numbers from $1$ to $n$ in order be a palindrome for some $n > 1$ ? (For example, if $n = 11$, the number obtained is $1234567891011$, which is not a palindrome.) PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2023 European Mathematical Cup, 3

Let $n$ be a positive integer. Let $B_n$ be the set of all binary strings of length $n$. For a binary string $s_1\hdots s_n$, we define it's twist in the following way. First, we count how many blocks of consecutive digits it has. Denote this number by $b$. Then, we replace $s_b$ with $1-s_b$. A string $a$ is said to be a [i]descendant[/i] of $b$ if $a$ can be obtained from $b$ through a finite number of twists. A subset of $B_n$ is called [i]divided[/i] if no two of its members have a common descendant. Find the largest possible cardinality of a divided subset of $B_n$. [i]Remark.[/i] Here is an example of a twist: $101100 \rightarrow 101000$ because $1\mid 0\mid 11\mid 00$ has $4$ blocks of consecutive digits. [i]Viktor Simjanoski[/i]

2010 German National Olympiad, 5

The polynomial $x^8 +x^7$ is written on a blackboard. In a move, Peter can erase the polynomial $P(x)$ and write down $(x+1)P(x)$ or its derivative $P'(x).$ After a while, the linear polynomial $ax+b$ with $a\ne 0$ is written on the board. Prove that $a-b$ is divisible by $49.$

2012 Pre - Vietnam Mathematical Olympiad, 4

Two people A and B play a game in the $m \times n$ grid ($m,n \in \mathbb{N^*}$). Each person respectively (A plays first) draw a segment between two point of the grid such that this segment doesn't contain any point (except the 2 ends) and also the segment (except the 2 ends) doesn't intersect with any other segments. The last person who can't draw is the loser. Which one (of A and B) have the winning tactics?

2014 Iran MO (3rd Round), 1

Denote by $g_n$ the number of connected graphs of degree $n$ whose vertices are labeled with numbers $1,2,...,n$. Prove that $g_n \ge (\frac{1}{2}).2^{\frac{n(n-1)}{2}}$. [b][u]Note[/u][/b]:If you prove that for $c < \frac{1}{2}$, $g_n \ge c.2^{\frac{n(n-1)}{2}}$, you will earn some point! [i]proposed by Seyed Reza Hosseini and Mohammad Amin Ghiasi[/i]

2022 Azerbaijan EGMO/CMO TST, C3

Suppose $n\geq 3$ is an integer. There are $n$ grids on a circle. We put a stone in each grid. Find all positive integer $n$, such that we can perform the following operation $n-2$ times, and then there exists a grid with $n-1$ stones in it: $\bullet$ Pick a grid $A$ with at least one stone in it. And pick a positive integer $k\leq n-1$. Take all stones in the $k$-th grid after $A$ in anticlockwise direction. And put then in the $k$-th grid after $A$ in clockwise direction.

2016 BMT Spring, 10

An $m \times n$ rectangle is tiled with $\frac{mn}{2}$ $1 \times 2$ dominoes. The tiling is such that whenever the rectangle is partitioned into two smaller rectangles, there exists a domino that is part of the interior of both rectangles. Given $mn > 2$, what is the minimum possible value of $mn$? For instance, the following tiling of a $4 \times 3$ rectangle doesn’t work because we can partition along the line shown, but that doesn’t necessarily mean other $4 \times 3$ tilings don’t work. [img]https://cdn.artofproblemsolving.com/attachments/d/3/cb1fed407e45463950542b3cc64185892afdc5.png[/img]

2012 Cono Sur Olympiad, 5

5. $A$ and $B$ play alternating turns on a $2012 \times 2013$ board with enough pieces of the following types: Type $1$: Piece like Type $2$ but with one square at the right of the bottom square. Type $2$: Piece of $2$ consecutive squares, one over another. Type $3$: Piece of $1$ square. At his turn, $A$ must put a piece of the type $1$ on available squares of the board. $B$, at his turn, must put exactly one piece of each type on available squares of the board. The player that cannot do more movements loses. If $A$ starts playing, decide who has a winning strategy. Note: The pieces can be rotated but cannot overlap; they cannot be out of the board. The pieces of the types $1$, $2$ and $3$ can be put on exactly $3$, $2$ and $1$ squares of the board respectively.

2025 Kyiv City MO Round 1, Problem 2

Can the numbers from \( 1 \) to \( 2025 \) be arranged in a circle such that the difference between any two adjacent numbers has the form \( 2^k \) for some non-negative integer \( k \)? For different adjacent pairs of numbers, the values of \( k \) may be different. [i]Proposed by Anton Trygub[/i]

2017 Saudi Arabia Pre-TST + Training Tests, 2

There are $4950$ ants. Assume that, for any three ants $A, B$ and $C$, if the ant $A$ is the boss of the ant $B$, and the ant $B$ is the boss of the ant $C$ then the ant $A$ is also the boss of the ant $C$. We want to divide the ants into $n$ groups so that in any group, either any two ants have the boss relationship or any two ants do not have the boss relationship. Find the smallest of $n$ we can always do in any case.