This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6

2024 Thailand TSTST, 9

Let triangle \( ABC \) be an acute-angled triangle. Square \( AEFB \) and \( ADGC \) lie outside triangle \( ABC \). \( BD \) intersects \( CE \) at point \( H \), and \( BG \) intersects \( CF \) at point \( I \). The circumcircle of triangle \( BFI \) intersects the circumcircle of triangle \( CGI \) again at point \( K \). Prove that line segment \( HK \) bisects \( BC \).

2024 Thailand October Camp, 3

Let triangle \( ABC \) be an acute-angled triangle. Square \( AEFB \) and \( ADGC \) lie outside triangle \( ABC \). \( BD \) intersects \( CE \) at point \( H \), and \( BG \) intersects \( CF \) at point \( I \). The circumcircle of triangle \( BFI \) intersects the circumcircle of triangle \( CGI \) again at point \( K \). Prove that line segment \( HK \) bisects \( BC \).

1998 IMO Shortlist, 5

Let $ABC$ be a triangle, $H$ its orthocenter, $O$ its circumcenter, and $R$ its circumradius. Let $D$ be the reflection of the point $A$ across the line $BC$, let $E$ be the reflection of the point $B$ across the line $CA$, and let $F$ be the reflection of the point $C$ across the line $AB$. Prove that the points $D$, $E$ and $F$ are collinear if and only if $OH=2R$.

2025 Thailand Mathematical Olympiad, 4

Let $D,E$ and $F$ be touch points of the incenter of $\triangle ABC$ at $BC, CA$ and $AB$, respectively. Let $P,Q$ and $R$ be the circumcenter of triangles $AFE, BDF$ and $CED$, respectively. Show that $DP, EQ$ and $FR$ concurrent.

2014 USAMO, 5

Let $ABC$ be a triangle with orthocenter $H$ and let $P$ be the second intersection of the circumcircle of triangle $AHC$ with the internal bisector of the angle $\angle BAC$. Let $X$ be the circumcenter of triangle $APB$ and $Y$ the orthocenter of triangle $APC$. Prove that the length of segment $XY$ is equal to the circumradius of triangle $ABC$.

1999 Romania Team Selection Test, 6

Let $ABC$ be a triangle, $H$ its orthocenter, $O$ its circumcenter, and $R$ its circumradius. Let $D$ be the reflection of the point $A$ across the line $BC$, let $E$ be the reflection of the point $B$ across the line $CA$, and let $F$ be the reflection of the point $C$ across the line $AB$. Prove that the points $D$, $E$ and $F$ are collinear if and only if $OH=2R$.