This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 563

2004 India IMO Training Camp, 1

A set $A_1 , A_2 , A_3 , A_4$ of 4 points in the plane is said to be [i]Athenian[/i] set if there is a point $P$ of the plane satsifying (*) $P$ does not lie on any of the lines $A_i A_j$ for $1 \leq i < j \leq 4$; (**) the line joining $P$ to the mid-point of the line $A_i A_j$ is perpendicular to the line joining $P$ to the mid-point of $A_k A_l$, $i,j,k,l$ being distinct. (a) Find all [i]Athenian[/i] sets in the plane. (b) For a given [i]Athenian[/i] set, find the set of all points $P$ in the plane satisfying (*) and (**)

2018 Ramnicean Hope, 3

Consider a complex number whose affix in the complex plane is situated on the first quadrant of the unit circle centered at origin. Then, the following inequality holds. $$ \sqrt{2} +\sqrt{2+\sqrt{2}} \le |1+z|+|1+z^2|+|1+z^4|\le 6 $$ [i]Costică Ambrinoc[/i]

2023 China Second Round, 1

We define a complex number $z=9+10i$ please find the maximum of a positive integer $n$ which satisfies $|z^n|\leq2023$

2023 South East Mathematical Olympiad, 2

For a non-empty finite complex number set $A$, define the "[i]Tao root[/i]" of $A$ as $\left|\sum_{z\in A} z \right|$. Given the integer $n\ge 3$, let the set $$U_n = \{\cos\frac{2k \pi}{n}+ i\sin\frac{2k \pi}{n}|k=0,1,...,n-1\}.$$Let $a_n$ be the number of non-empty subsets in which the [i]Tao root [/i] of $U_n$ is $0$ , $b_n$ is the number of non-empty subsets of $U_n$ whose [i]Tao root[/i] is $1$. Compare the sizes of $na_n$ and $2b_n$.

2015 BMT Spring, 8

Let $\omega$ be a primitive $7$th root of unity. Find $$\prod_{k=0}^6\left(1+\omega^k-\omega^{2k}\right).$$ (A complex number is a primitive root of unity if and only if it can be written in the form $e^{2k\pi i/n}$, where $k$ is relatively prime to $n$.)

2018 AMC 12/AHSME, 22

The solutions to the equations $z^2=4+4\sqrt{15}i$ and $z^2=2+2\sqrt 3i,$ where $i=\sqrt{-1},$ form the vertices of a parallelogram in the complex plane. The area of this parallelogram can be written in the form $p\sqrt q-r\sqrt s,$ where $p,$ $q,$ $r,$ and $s$ are positive integers and neither $q$ nor $s$ is divisible by the square of any prime number. What is $p+q+r+s?$ $\textbf{(A) } 20 \qquad \textbf{(B) } 21 \qquad \textbf{(C) } 22 \qquad \textbf{(D) } 23 \qquad \textbf{(E) } 24 $

1994 National High School Mathematics League, 1

In the equation $x^2+z_1x+z_2+m=0$, $z_1,z_2,m$ are complex numbers, and $z_1^2-4z_2=16+20\text{i}$. Two roots of the equations are $\alpha,\beta$. If $|\alpha-\beta|=2\sqrt7$, find the maximum and minumum value of $|m|$.

1967 Czech and Slovak Olympiad III A, 1

Find all triplets $(a,b,c)$ of complex numbers such that the equation \[x^4-ax^3-bx+c=0\] has $a,b,c$ as roots.

2016 Nigerian Senior MO Round 2, Problem 1

Let $a, b, c, x, y$ and $z$ be complex numbers such that $a=\frac{b+c}{x-2}, b=\frac{c+a}{y-2}, c=\frac{a+b}{z-2}$. If $xy+yz+zx=1000$ and $x+y+z=2016$, find the value of $xyz$.

2006 Cezar Ivănescu, 2

[b]a)[/b] Let be a nonnegative integer $ n. $ Solve in the complex numbers the equation $ z^n\cdot\Re z=\bar z^n\cdot\Im z. $ [b]b)[/b] Let be two complex numbers $ v,d $ satisfying $ v+1/v=d/\bar d +\bar d/d. $ Show that $$ v^n+1/v^n=d^n/\bar d^n + \bar d^n/d^n, $$ for any nonnegative integer $ n. $

1992 National High School Mathematics League, 10

$z_1,z_2$ are complex numbers. $|z_1|=3,|z_2|=5,|z_1+z_2|=7$, then $\arg(\frac{z_2}{z_1})^3=$________.

2009 ELMO Problems, 5

Let $ABCDEFG$ be a regular heptagon with center $O$. Let $M$ be the centroid of $\triangle ABD$. Prove that $\cos^2(\angle GOM)$ is rational and determine its value. [i]Evan o'Dorney[/i]

2012 Today's Calculation Of Integral, 833

Let $f(x)=\int_0^{x} e^{t} (\cos t+\sin t)\ dt,\ g(x)=\int_0^{x} e^{t} (\cos t-\sin t)\ dt.$ For a real number $a$, find $\sum_{n=1}^{\infty} \frac{e^{2a}}{\{f^{(n)}(a)\}^2+\{g^{(n)}(a)\}^2}.$

2022 Romania National Olympiad, P2

Let $z_1$ and $z_2$ be complex numbers. Prove that \[|z_1+z_2|+|z_1-z_2|\leqslant |z_1|+|z_2|+\max\{|z_1|,|z_2|\}.\][i]Vlad Cerbu and Sorin Rădulescu[/i]

2025 Romania National Olympiad, 4

Find all pairs of complex numbers $(z,w) \in \mathbb{C}^2$ such that the relation \[|z^{2n}+z^nw^n+w^{2n} | = 2^{2n}+2^n+1 \] holds for all positive integers $n$.

2014 Cezar Ivănescu, 2

While there do not exist pairwise distinct real numbers $a,b,c$ satisfying $a^2+b^2+c^2 = ab+bc+ca$, there do exist complex numbers with that property. Let $a,b,c$ be complex numbers such that $a^2+b^2+c^2 = ab+bc+ca$ and $|a+b+c| = 21$. Given that $|a-b| = 2\sqrt{3}$, $|a| = 3\sqrt{3}$, compute $|b|^2+|c|^2$. [hide="Clarifications"] [list] [*] The problem should read $|a+b+c| = 21$. An earlier version of the test read $|a+b+c| = 7$; that value is incorrect. [*] $|b|^2+|c|^2$ should be a positive integer, not a fraction; an earlier version of the test read ``... for relatively prime positive integers $m$ and $n$. Find $m+n$.''[/list][/hide] [i]Ray Li[/i]

1991 National High School Mathematics League, 11

For two complex numbers $z_1,z_2$ satisfy that $|z_1|=|z_1+z_2|=3,|z_1-z_2|=3\sqrt3$, then $\log_3|(z_1\overline{z_2})^{2000}+(\overline{z_1}z_2)^{2000}|=$________.

1948 Putnam, B6

Answer wither (i) or (ii): (i) Let $V, V_1 , V_2$ and $V_3$ denote four vertices of a cube such that $V_1 , V_2 , V_3 $ are adjacent to $V.$ Project the cube orthogonally on a plane of which the points are marked with complex numbers. Let the projection of $V$ fall in the origin and the projections of $V_1 , V_2 , V_3 $ in points marked with the complex numbers $z_1 , z_2 , z_3$, respectively. Show that $z_{1}^{2} +z_{2}^{2} +z_{3}^{2}=0.$ (ii) Let $(a_{ij})$ be a matrix such that $$|a_{ii}| > |a_{i1}| + |a_{i2}|+\ldots +|a_{i i-1}|+ |a_{i i+1}| +\ldots +|a_{in}|$$ for all $i.$ Show that the determinant is not equal to $0.$

2001 AMC 12/AHSME, 23

A polynomial of degree four with leading coefficient 1 and integer coefficients has two zeros, both of which are integers. Which of the following can also be a zero of the polynomial? $ \textbf{(A)} \ \frac {1 \plus{} i \sqrt {11}}{2} \qquad \textbf{(B)} \ \frac {1 \plus{} i}{2} \qquad \textbf{(C)} \ \frac {1}{2} \plus{} i \qquad \textbf{(D)} \ 1 \plus{} \frac {i}{2} \qquad \textbf{(E)} \ \frac {1 \plus{} i \sqrt {13}}{2}$

2020 China Team Selection Test, 1

Let $\omega$ be a $n$ -th primitive root of unity. Given complex numbers $a_1,a_2,\cdots,a_n$, and $p$ of them are non-zero. Let $$b_k=\sum_{i=1}^n a_i \omega^{ki}$$ for $k=1,2,\cdots, n$. Prove that if $p>0$, then at least $\tfrac{n}{p}$ numbers in $b_1,b_2,\cdots,b_n$ are non-zero.

2000 IMC, 3

Let $p(z)$ be a polynomial of degree $n>0$ with complex coefficients. Prove that there are at least $n+1$ complex numbers $z$ for which $p(z)\in \{0,1\}$.

2012 Online Math Open Problems, 7

A board $64$ inches long and $4$ inches high is inclined so that the long side of the board makes a $30$ degree angle with the ground. The distance from the ground to the highest point on the board can be expressed in the form $a+b\sqrt{c}$ where $a,b,c$ are positive integers and $c$ is not divisible by the square of any prime. What is $a+b+c$? [i]Author: Ray Li[/i] [hide="Clarification"]The problem is intended to be a two-dimensional problem. The board's dimensions are 64 by 4. The long side of the board makes a 30 degree angle with the ground. One corner of the board is touching the ground.[/hide]

2012 Pre-Preparation Course Examination, 5

Suppose that for the linear transformation $T:V \longrightarrow V$ where $V$ is a vector space, there is no trivial subspace $W\subset V$ such that $T(W)\subseteq W$. Prove that for every polynomial $p(x)$, the transformation $p(T)$ is invertible or zero.

2011 ELMO Shortlist, 3

Let $N$ be a positive integer. Define a sequence $a_0,a_1,\ldots$ by $a_0=0$, $a_1=1$, and $a_{n+1}+a_{n-1}=a_n(2-1/N)$ for $n\ge1$. Prove that $a_n<\sqrt{N+1}$ for all $n$. [i]Evan O'Dorney.[/i]

2016 South East Mathematical Olympiad, 5

Let a constant $\alpha$ as $0<\alpha<1$, prove that: $(1)$ There exist a constant $C(\alpha)$ which is only depend on $\alpha$ such that for every $x\ge 0$, $\ln(1+x)\le C(\alpha)x^\alpha$. $(2)$ For every two complex numbers $z_1,z_2$, $|\ln|\frac{z_1}{z_2}||\le C(\alpha)\left(|\frac{z_1-z_2}{z_2}|^\alpha+|\frac{z_2-z_1}{z_1}|^\alpha\right)$.