Found problems: 563
1966 IMO Longlists, 36
Let $ABCD$ be a quadrilateral inscribed in a circle. Show that the centroids of triangles $ABC,$ $CDA,$ $BCD,$ $DAB$ lie on one circle.
2021 BMT, 20
For some positive integer $n$, $(1 + i) + (1 + i)^2 + (1 + i)^3 + ... + (1 + i)^n = (n^2 - 1)(1 - i)$, where $i = \sqrt{-1}$. Compute the value of $n$.
1995 All-Russian Olympiad, 3
Can the equation $f(g(h(x))) = 0$, where $f$, $g$, $h$ are quadratic polynomials, have the solutions $1, 2, 3, 4, 5, 6, 7, 8$?
[i]S. Tokarev[/i]
2013 Purple Comet Problems, 20
Let $z$ be a complex number satisfying $(z+\tfrac{1}{z})(z+\tfrac{1}{z}+1)=1$. Evaluate $(3z^{100}+\tfrac{2}{z^{100}}+1)(z^{100}+\tfrac{2}{z^{100}}+3)$.
2014 District Olympiad, 3
[list=a]
[*]Let $A$ be a matrix from $\mathcal{M}_{2}(\mathbb{C})$, $A\neq aI_{2}$,
for any $a\in\mathbb{C}$. Prove that the matrix $X$ from $\mathcal{M}
_{2}(\mathbb{C})$ commutes with $A$, that is, $AX=XA$, if and only if there
exist two complex numbers $\alpha$ and $\alpha^{\prime}$, such that $X=\alpha
A+\alpha^{\prime}I_{2}$.
[*]Let $A$, $B$ and $C$ be matrices from $\mathcal{M}_{2}(\mathbb{C})$, such
that $AB\neq BA$, $AC=CA$ and $BC=CB$. Prove that $C$ commutes with all
matrices from $\mathcal{M}_{2}(\mathbb{C})$.[/list]
2012 Grigore Moisil Intercounty, 4
[b]a)[/b] Let $ A $ denote the complex numbers of modulus $ 1/3, $ and $ B $ denote the complex numbers of modulus at least $ 1/2. $ Show that $ A+B=AB\neq\mathbb{C} . $
[b]b)[/b] Prove that there is no family $ Y $ of complex numbers that satisfies $ X+Y=XY\neq\mathbb{C} , $ where $ X $ denotes the complex numbers of modulus $ 1. $
1977 IMO Longlists, 29
In the interior of a square $ABCD$ we construct the equilateral triangles $ABK, BCL, CDM, DAN.$ Prove that the midpoints of the four segments $KL, LM, MN, NK$ and the midpoints of the eight segments $AK, BK, BL, CL, CM, DM, DN, AN$ are the 12 vertices of a regular dodecagon.
1999 VJIMC, Problem 4
Show that the following implication holds for any two complex numbers $x$ and $y$: if $x+y$, $x^2+y^2$, $x^3+y^3$, $x^4+y^4\in\mathbb Z$, then $x^n+y^n\in\mathbb Z$ for all natural n.
1997 AIME Problems, 11
Let $x=\frac{\displaystyle\sum_{n=1}^{44} \cos n^\circ}{\displaystyle \sum_{n=1}^{44} \sin n^\circ}.$ What is the greatest integer that does not exceed $100x$?
2023 Princeton University Math Competition, 11
11. Let $f(z)=\frac{a z+b}{c z+d}$ for $a, b, c, d \in \mathbb{C}$. Suppose that $f(1)=i, f(2)=i^{2}$, and $f(3)=i^{3}$. If the real part of $f(4)$ can be written as $\frac{m}{n}$ for relatively prime positive integers $m, n$, find $m^{2}+n^{2}$.
2002 National High School Mathematics League, 7
Complex numbers $|z_1|=2,|z_2|=3$, and the intersection angle between the vectors corresponding to $z_1,z_2$ is $60^{\circ}$, then $\frac{|z_1+z_2|}{|z_1-z_2|}=$________.
2019 IFYM, Sozopol, 6
Prove that for $\forall$ $z\in \mathbb{C}$ the following inequality is true:
$|z|^2+2|z-1|\geq 1$,
where $"="$ is reached when $z=1$.
DMM Individual Rounds, 2010 Tie
[b]p1.[/b] Let the series an be defined as $a_1 = 1$ and $a_n =\sum^{n-1}_{i=1} a_ia_{n-i}$ for all positive integers $n$. Evaluate $\sum^{\infty}_{i=1} \left(\frac14\right)^ia_i$.
[b]p2.[/b] $a, b, c$ and $d$ are distinct real numbers such that $$a + \frac{1}{b}= b +\frac{1}{c}= c +\frac{1}{d}= d +\frac{1}{a}= x$$ Find |x|.
[b]p3.[/b] Find all ordered tuples $(w, x, y, z)$ of complex numbers satisfying
$$x + y + z + xy + yz + zx + xyz = -w$$
$$y + z + w + yz + zw + wy + yzw = -x$$
$$z + w + x + zw + wx + xz + zwx = -y$$
$$w + x + y + wx + xy + yw + wxy = -z$$
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2007 Korea National Olympiad, 1
Consider the string of length $ 6$ composed of three characters $ a$, $ b$, $ c$. For each string, if two $ a$s are next to each other, or two $ b$s are next to each other, then replace $ aa$ by $ b$, and replace $ bb$ by $ a$. Also, if $ a$ and $ b$ are next to each other, or two $ c$s are next to each other, remove all two of them (i.e. delete $ ab$, $ ba$, $ cc$). Determine the number of strings that can be reduced to $ c$, the string of length 1, by the reducing processes mentioned above.
1960 Miklós Schweitzer, 2
[b]2.[/b] Construct a sequence $(a_n)_{n=1}^{\infty}$ of complex numbers such that, for every $l>0$, the series
$\sum_{n=1}^{\infty} \mid a_n \mid ^{l}$
be divergent, but for almost all $\theta$ in $(0,2\pi)$,
$\prod_{n=1}^{\infty} (1+a_n e^{i\theta})$
be convergent. [b](S. 11)[/b]
2007 Czech-Polish-Slovak Match, 1
Find all polynomials $P$ with real coefficients satisfying $P(x^2)=P(x)\cdot P(x+2)$ for all real numbers $x.$
2004 District Olympiad, 4
If $x,y \in (0, \frac{\pi}{2})$ such as $ (cosx+isiny)^n=cos(nx)+isin(ny)$ for two consecutive positive integers, then the relation is true for all positive integers.
1986 National High School Mathematics League, 2
Set $M=\{z\in\mathbb{C}|(z-1)^2=|z-1|^2\}$, then
$\text{(A)}M=\{\text{pure imaginary number}\}$
$\text{(B)}M=\{\text{real number}\}$
$\text{(C)}M=\{\text{real number}\}\subset M\subset\{\text{complex number}\}$
$\text{(D)}M=\{\text{complex number}\}$
2003 Miklós Schweitzer, 3
Let $Z=\{ z_1,\ldots, z_{n-1}\}$, $n\ge 2$, be a set of different complex numbers such that $Z$ contains the conjugate of any its element.
a) Show that there exists a constant $C$, depending on $Z$, such that for any $\varepsilon\in (0,1)$ there exists an algebraic integer $x_0$ of degree $n$, whose algebraic conjugates $x_1, x_2, \ldots, x_{n-1}$ satisfy $|x_1-z_1|\le \varepsilon, \ldots, |x_{n-1}-z_{n-1}|\le \varepsilon$ and $|x_0|\le \frac{C}{\varepsilon}$.
b) Show that there exists a set $Z=\{ z_1, \ldots, z_{n-1}\}$ and a positive number $c_n$ such that for any algebraic integer $x_0$ of degree $n$, whose algebraic conjugates satisfy $|x_1-z_1|\le \varepsilon,\ldots, |x_{n-1}-z_{n-1}|\le \varepsilon$, it also holds that $|x_0|>\frac{c_n}{\varepsilon}$.
(translated by L. Erdős)
2019 CMI B.Sc. Entrance Exam, 2
$(a)$ Count the number of roots of $\omega$ of the equation $z^{2019} - 1 = 0 $ over complex numbers that satisfy
\begin{align*}
\vert \omega + 1 \vert \geq \sqrt{2 + \sqrt{2}}
\end{align*}
$(b)$ Find all real numbers $x$ that satisfy following equation $:$
\begin{align*}
\frac{ 8^x + 27^x }{ 12^x + 18^x } = \frac{7}{6}
\end{align*}
2017 AMC 12/AHSME, 12
What is the sum of the roots of $z^{12} = 64$ that have a positive real part?
$\textbf{(A) }2 \qquad\textbf{(B) }4 \qquad\textbf{(C) }\sqrt{2} +2\sqrt{3}\qquad\textbf{(D) }2\sqrt{2}+ \sqrt{6} \qquad\textbf{(E) }(1 + \sqrt{3}) + (1+\sqrt{3})i$
2014 Romania National Olympiad, 4
Let $n \in \mathbb{N} , n \ge 2$ and $ a_0,a_1,a_2,\cdots,a_n \in \mathbb{C} ; a_n \not = 0 $. Then:
[b][size=100][i]P.[/i][/size][/b] $|a_nz^n + a_{n-1}z^z{n-1} + \cdots + a_1z + a_0 | \le |a_n+a_0|$ for any $z \in \mathbb{C}, |z|=1$
[b][size=100][i]Q[/i][/size][/b]. $a_1=a_2=\cdots=a_{n-1}=0$ and $a_0/a_n \in [0,\infty)$
Prove that $ P \Longleftrightarrow Q$
1972 Spain Mathematical Olympiad, 4
The following sets of points are considered in the plane:
$A=\{$ affixes of complexes $z$ such that arg $(z - (2 + 3i))=\pi /4\}$,
$B =\{$ affixes of complexes $z$ such that mod $( z- (2 + i)<2\}$.
Determine the orthogonal projection on the $X$ axis of $A \cap B$.
1997 National High School Mathematics League, 9
$z$ is a complex number that $\left|2z+\frac{1}{z}\right|=1$, then the range value of $\arg(z)$ is________.
2018 Purple Comet Problems, 18
Find the positive integer $k$ such that the roots of $x^3 - 15x^2 + kx -1105$ are three distinct collinear points in the complex plane.