This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 18

1976 IMO Shortlist, 2

Let $a_0, a_1, \ldots, a_n, a_{n+1}$ be a sequence of real numbers satisfying the following conditions: \[a_0 = a_{n+1 }= 0,\]\[ |a_{k-1} - 2a_k + a_{k+1}| \leq 1 \quad (k = 1, 2,\ldots , n).\] Prove that $|a_k| \leq \frac{k(n+1-k)}{2} \quad (k = 0, 1,\ldots ,n + 1).$

1985 IMO Longlists, 66

Let $D$ be the interior of the circle $C$ and let $A \in C$. Show that the function $f : D \to \mathbb R, f(M)=\frac{|MA|}{|MM'|}$ where $M' = AM \cap C$, is strictly convex; i.e., $f(P) <\frac{f(M_1)+f(M_2)}{2}, \forall M_1,M_2 \in D, M_1 \neq M_2$ where $P$ is the midpoint of the segment $M_1M_2.$

1999 Romania National Olympiad, 4

a) Let $a,b\in R$, $a <b$. Prove that $x \in (a,b)$ if and only if there exists $\lambda \in (0,1)$ such that $x=\lambda a +(1-\lambda)b$. b) If the function $f: R \to R$ has the property: $$f (\lambda x+(1-\lambda) y) < \lambda f(x) + (1-\lambda)f(y), \forall x,y \in R, x\ne y, \forall \lambda \in (0,1), $$ prove that one cannot find four points on the function’s graph that are the vertices of a parallelogram

2001 Czech-Polish-Slovak Match, 1

Let $n\ge2$ be a natural number, and $a_i$ be positive numbers, where $i=1,2,\cdots,n.$ Show that \[\left(a_1^3+1\right)\left(a_2^3+1\right)\cdots\left(a_n^3+1\right) \geq \left(a_1^2a_2+1\right)\left(a_2^2a_3+1\right)\cdots\left(a_n^2a_1+1\right)\]

1977 IMO Shortlist, 4

Describe all closed bounded figures $\Phi$ in the plane any two points of which are connectable by a semicircle lying in $\Phi$.

2017 Baltic Way, 1

Let $a_0,a_1,a_2,...$ be an infinite sequence of real numbers satisfying $\frac{a_{n-1}+a_{n+1}}{2}\geq a_n$ for all positive integers $n$. Show that $$\frac{a_0+a_{n+1}}{2}\geq \frac{a_1+a_2+...+a_n}{n}$$ holds for all positive integers $n$.

2021 IMO Shortlist, A4

Show that the inequality \[\sum_{i=1}^n \sum_{j=1}^n \sqrt{|x_i-x_j|}\leqslant \sum_{i=1}^n \sum_{j=1}^n \sqrt{|x_i+x_j|}\]holds for all real numbers $x_1,\ldots x_n.$

2023 IMC, 9

We say that a real number $V$ is [i]good[/i] if there exist two closed convex subsets $X$, $Y$ of the unit cube in $\mathbb{R}^3$, with volume $V$ each, such that for each of the three coordinate planes (that is, the planes spanned by any two of the three coordinate axes), the projections of $X$ and $Y$ onto that plane are disjoint. Find $\sup \{V\mid V\ \text{is good}\}$.

1976 IMO Longlists, 3

Let $a_0, a_1, \ldots, a_n, a_{n+1}$ be a sequence of real numbers satisfying the following conditions: \[a_0 = a_{n+1 }= 0,\]\[ |a_{k-1} - 2a_k + a_{k+1}| \leq 1 \quad (k = 1, 2,\ldots , n).\] Prove that $|a_k| \leq \frac{k(n+1-k)}{2} \quad (k = 0, 1,\ldots ,n + 1).$

2011 Bogdan Stan, 4

Let be an open interval $ I $ and a convex function $ f:I\longrightarrow\mathbb{R} . $ Prove that the lateral derivatives of $ f $ are left-continuous on $ \mathbb{R} $ and also right-continuous on $ \mathbb{R} . $ [i]Marin Tolosi[/i]

1980 USAMO, 5

Prove that for numbers $a,b,c$ in the interval $[0,1]$, \[\frac{a}{b+c+1}+\frac{b}{c+a+1}+\frac{c}{a+b+1}+(1-a)(1-b)(1-c) \le 1.\]

2012 Centers of Excellency of Suceava, 4

Let be two real numbers $ a<b $ and a differentiable function $ f:[a,b]\longrightarrow\mathbb{R} $ that has a bounded derivative. Show that if $ \frac{f(b)-f(a)}{b-a} $ is equal to the global supremum or infimum of $ f', $ then $ f $ is polynomial with degree $ 1. $ [i]Cătălin Țigăeru[/i]

1980 Putnam, B5

For each $t \geq 0$ let $S_t$ be the set of all nonnegative, increasing, convex, continuous, real-valued functions $f(x)$ defined on the closed interval $[0,1]$ for which $$f(1) -2 f(2 \slash 3) +f (1 \slash 3) \geq t( f( 2 \slash 3) -2 f(1 \slash 3) +f(0)).$$ Define necessary and sufficient conditions on $ t$ for $S_t $ to be closed under multiplication.

2021 IMO, 2

Show that the inequality \[\sum_{i=1}^n \sum_{j=1}^n \sqrt{|x_i-x_j|}\leqslant \sum_{i=1}^n \sum_{j=1}^n \sqrt{|x_i+x_j|}\]holds for all real numbers $x_1,\ldots x_n.$

1977 IMO Longlists, 13

Describe all closed bounded figures $\Phi$ in the plane any two points of which are connectable by a semicircle lying in $\Phi$.

1975 IMO Shortlist, 4

Let $a_1, a_2, \ldots , a_n, \ldots $ be a sequence of real numbers such that $0 \leq a_n \leq 1$ and $a_n - 2a_{n+1} + a_{n+2} \geq 0$ for $n = 1, 2, 3, \ldots$. Prove that \[0 \leq (n + 1)(a_n - a_{n+1}) \leq 2 \qquad \text{ for } n = 1, 2, 3, \ldots\]

2007 Nicolae Păun, 2

Consider a sequence of positive real numbers $ \left( x_n \right)_{n\ge 1} $ and a primitivable function $ f:\mathbb{R}\longrightarrow\mathbb{R} . $ [b]a)[/b] Prove that $ f $ is monotonic and continuous if for any natural numbers $ n $ and real numbers $ x, $ the inequality $$ f\left( x+x_n \right)\geqslant f(x) $$ is true. [b]b)[/b] Show that $ f $ is convex if for any natural numbers $ n $ and real numbers $ x, $ the inequality $$ f\left( x+2x_n \right) +f(x)\geqslant 2f\left( x+x_n \right) $$ is true. [i]Sorin Rădulescu[/i] and [i]Ion Savu[/i]

1985 IMO Shortlist, 5

Let $D$ be the interior of the circle $C$ and let $A \in C$. Show that the function $f : D \to \mathbb R, f(M)=\frac{|MA|}{|MM'|}$ where $M' = AM \cap C$, is strictly convex; i.e., $f(P) <\frac{f(M_1)+f(M_2)}{2}, \forall M_1,M_2 \in D, M_1 \neq M_2$ where $P$ is the midpoint of the segment $M_1M_2.$