This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 401

2014 Harvard-MIT Mathematics Tournament, 2

There are $10$ people who want to choose a committee of 5 people among them. They do this by first electing a set of $1, 2, 3,$ or $4$ committee leaders, who then choose among the remaining people to complete the 5-person committee. In how many ways can the committee be formed, assuming that people are distinguishable? (Two committees that have the same members but different sets of leaders are considered to be distinct.)

2020 LIMIT Category 1, 15

In a $4\times 4$ chessboard, in how many ways can you place $3$ rooks and one bishop such that none of these pieces threaten another piece?

2018 Brazil Team Selection Test, 3

Let $n > 10$ be an odd integer. Determine the number of ways to place the numbers $1, 2, \ldots , n$ around a circle so that each number in the circle divides the sum its two neighbors. (Two configurations such that one can be obtained from the other per rotation are to be counted only once.)

2020 AIME Problems, 5

Six cards numbered 1 through 6 are to be lined up in a row. Find the number of arrangements of these six cards where one of the cards can be removed leaving the remaining five cards in either ascending or descending order.

1977 IMO Shortlist, 6

Let $n$ be a positive integer. How many integer solutions $(i, j, k, l) , \ 1 \leq i, j, k, l \leq n$, does the following system of inequalities have: \[1 \leq -j + k + l \leq n\]\[1 \leq i - k + l \leq n\]\[1 \leq i - j + l \leq n\]\[1 \leq i + j - k \leq n \ ?\]

2007 District Olympiad, 2

All $ 2n\ge 2 $ squares of a $ 2\times n $ rectangle are colored with three colors. We say that a color has a [i]cut[/i] if there is some column (from all $ n $) that has both squares colored with it. Determine: [b]a)[/b] the number of colorings that have no cuts. [b]b)[/b] the number of colorings that have a single cut.

2022 Cyprus JBMO TST, 4

Consider the digits $1, 2, 3, 4, 5, 6, 7$. (a) Determine the number of seven-digit numbers with distinct digits that can be constructed using the digits above. (b) If we place all of these seven-digit numbers in increasing order, find the seven-digit number which appears in the $2022^{\text{th}}$ position.

1977 IMO Longlists, 16

Let $n$ be a positive integer. How many integer solutions $(i, j, k, l) , \ 1 \leq i, j, k, l \leq n$, does the following system of inequalities have: \[1 \leq -j + k + l \leq n\]\[1 \leq i - k + l \leq n\]\[1 \leq i - j + l \leq n\]\[1 \leq i + j - k \leq n \ ?\]

2004 Germany Team Selection Test, 3

Let $f(k)$ be the number of integers $n$ satisfying the following conditions: (i) $0\leq n < 10^k$ so $n$ has exactly $k$ digits (in decimal notation), with leading zeroes allowed; (ii) the digits of $n$ can be permuted in such a way that they yield an integer divisible by $11$. Prove that $f(2m) = 10f(2m-1)$ for every positive integer $m$. [i]Proposed by Dirk Laurie, South Africa[/i]

2014 Korea National Olympiad, 2

How many one-to-one functions $f : \{1, 2, \cdots, 9\} \rightarrow \{1, 2, \cdots, 9\}$ satisfy (i) and (ii)? (i) $f(1)>f(2)$, $f(9)<9$. (ii) For each $i=3, 4, \cdots, 8$, if $f(1), \cdots, f(i-1)$ are smaller than $f(i)$, then $f(i+1)$ is also smaller than $f(i)$.

2008 Harvard-MIT Mathematics Tournament, 1

Four students from Harvard, one of them named Jack, and five students from MIT, one of them named Jill, are going to see a Boston Celtics game. However, they found out that only $ 5$ tickets remain, so $ 4$ of them must go back. Suppose that at least one student from each school must go see the game, and at least one of Jack and Jill must go see the game, how many ways are there of choosing which $ 5$ people can see the game?

2013 Greece Team Selection Test, 4

Given are $n$ different concentric circles on the plane.Inside the disk with the smallest radius (strictly inside it),we consider two distinct points $A,B$.We consider $k$ distinct lines passing through $A$ and $m$ distinct lines passing through $B$.There is no line passing through both $A$ and $B$ and all the lines passing through $k$ intersect with all the lines passing through $B$.The intersections do not lie on some of the circles.Determine the maximum and the minimum number of regions formed by the lines and the circles and are inside the circles.

2018 PUMaC Combinatorics A, 2

In an election between $\text{A}$ and $\text{B}$, during the counting of the votes, neither candidate was more than $2$ votes ahead, and the vote ended in a tie, $6$ votes to $6$ votes. Two votes for the same candidate are indistinguishable. In how many orders could the votes have been counted? One possibility is $\text{AABBABBABABA}$.

1970 IMO, 3

Given $100$ coplanar points, no three collinear, prove that at most $70\%$ of the triangles formed by the points have all angles acute.

2019 AMC 10, 14

Tags: counting
For a set of four distinct lines in a plane, there are exactly $N$ distinct points that lie on two or more of the lines. What is the sum of all possible values of $N$? $\textbf{(A) } 14 \qquad \textbf{(B) } 16 \qquad \textbf{(C) } 18 \qquad \textbf{(D) } 19 \qquad \textbf{(E) } 21$

2015 USAJMO, 6

Steve is piling $m\geq 1$ indistinguishable stones on the squares of an $n\times n$ grid. Each square can have an arbitrarily high pile of stones. After he finished piling his stones in some manner, he can then perform [i]stone moves[/i], defined as follows. Consider any four grid squares, which are corners of a rectangle, i.e. in positions $(i, k), (i, l), (j, k), (j, l)$ for some $1\leq i, j, k, l\leq n$, such that $i<j$ and $k<l$. A stone move consists of either removing one stone from each of $(i, k)$ and $(j, l)$ and moving them to $(i, l)$ and $(j, k)$ respectively, or removing one stone from each of $(i, l)$ and $(j, k)$ and moving them to $(i, k)$ and $(j, l)$ respectively. Two ways of piling the stones are equivalent if they can be obtained from one another by a sequence of stone moves. How many different non-equivalent ways can Steve pile the stones on the grid?

2014 AMC 12/AHSME, 13

A fancy bed and breakfast inn has $5$ rooms, each with a distinctive color-coded decor. One day $5$ friends arrive to spend the night. There are no other guests that night. The friends can room in any combination they wish, but with no more than $2$ friends per room. In how many ways can the innkeeper assign the guests to the rooms? $\textbf{(A) }2100\qquad \textbf{(B) }2220\qquad \textbf{(C) }3000\qquad \textbf{(D) }3120\qquad \textbf{(E) }3125\qquad$

1992 IMO Longlists, 15

Prove that there exist $78$ lines in the plane such that they have exactly $1992$ points of intersection.

2018 Mathematical Talent Reward Programme, MCQ: P 1

A coin is tossed 9 times. Hence $2^{9}$ different outcomes are possible. In how many cases 2 consecutive heads does not appear? [list=1] [*] 34 [*] 55 [*] 89 [*] None of these [/list]

2013 ELMO Shortlist, 8

We define the [i]Fibonacci sequence[/i] $\{F_n\}_{n\ge0}$ by $F_0=0$, $F_1=1$, and for $n\ge2$, $F_n=F_{n-1}+F_{n-2}$; we define the [i]Stirling number of the second kind[/i] $S(n,k)$ as the number of ways to partition a set of $n\ge1$ distinguishable elements into $k\ge1$ indistinguishable nonempty subsets. For every positive integer $n$, let $t_n = \sum_{k=1}^{n} S(n,k) F_k$. Let $p\ge7$ be a prime. Prove that \[ t_{n+p^{2p}-1} \equiv t_n \pmod{p} \] for all $n\ge1$. [i]Proposed by Victor Wang[/i]

2017 District Olympiad, 4

An ant can move from a vertex of a cube to the opposite side of its diagonal only on the edges and the diagonals of the faces such that it doesn’t trespass a second time through the path made. Find the distance of the maximum journey this ant can make.

2019 India PRMO, 27

We will say that a rearrangement of the letters of a word has no [i]fixed letters[/i] if, when the rearrangement is placed directly below the word, no column has the same letter repeated. For instance $HBRATA$ is a rearragnement with no fixed letter of $BHARAT$. How many distinguishable rearrangements with no fixed letters does $BHARAT$ have? (The two $A$s are considered identical.)

1969 IMO Longlists, 40

$(MON 1)$ Find the number of five-digit numbers with the following properties: there are two pairs of digits such that digits from each pair are equal and are next to each other, digits from different pairs are different, and the remaining digit (which does not belong to any of the pairs) is different from the other digits.

2015 NIMO Problems, 5

Compute the number of subsets $S$ of $\{0,1,\dots,14\}$ with the property that for each $n=0,1,\dots, 6$, either $n$ is in $S$ or both of $2n+1$ and $2n+2$ are in $S$. [i]Proposed by Evan Chen[/i]

2010 ELMO Shortlist, 5

Let $n > 1$ be a positive integer. A 2-dimensional grid, infinite in all directions, is given. Each 1 by 1 square in a given $n$ by $n$ square has a counter on it. A [i]move[/i] consists of taking $n$ adjacent counters in a row or column and sliding them each by one space along that row or column. A [i]returning sequence[/i] is a finite sequence of moves such that all counters again fill the original $n$ by $n$ square at the end of the sequence. [list] [*] Assume that all counters are distinguishable except two, which are indistinguishable from each other. Prove that any distinguishable arrangement of counters in the $n$ by $n$ square can be reached by a returning sequence. [*] Assume all counters are distinguishable. Prove that there is no returning sequence that switches two counters and returns the rest to their original positions.[/list] [i]Mitchell Lee and Benjamin Gunby.[/i]