This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 401

2005 National Olympiad First Round, 8

How many natural number triples $(x,y,z)$ are there such that $xyz = 10^6$? $ \textbf{(A)}\ 568 \qquad\textbf{(B)}\ 784 \qquad\textbf{(C)}\ 812 \qquad\textbf{(D)}\ 816 \qquad\textbf{(E)}\ 824 $

1997 IMO, 1

In the plane the points with integer coordinates are the vertices of unit squares. The squares are coloured alternately black and white (as on a chessboard). For any pair of positive integers $ m$ and $ n$, consider a right-angled triangle whose vertices have integer coordinates and whose legs, of lengths $ m$ and $ n$, lie along edges of the squares. Let $ S_1$ be the total area of the black part of the triangle and $ S_2$ be the total area of the white part. Let $ f(m,n) \equal{} | S_1 \minus{} S_2 |$. a) Calculate $ f(m,n)$ for all positive integers $ m$ and $ n$ which are either both even or both odd. b) Prove that $ f(m,n) \leq \frac 12 \max \{m,n \}$ for all $ m$ and $ n$. c) Show that there is no constant $ C\in\mathbb{R}$ such that $ f(m,n) < C$ for all $ m$ and $ n$.

1980 IMO Longlists, 16

Prove that $\sum \frac{1}{i_1i_2 \ldots i_k} = n$ is taken over all non-empty subsets $\left\{i_1,i_2, \ldots, i_k\right\}$ of $\left\{1,2,\ldots,n\right\}$. (The $k$ is not fixed, so we are summing over all the $2^n-1$ possible nonempty subsets.)

2004 Switzerland Team Selection Test, 6

Find all finite sequences $(x_0, x_1, \ldots,x_n)$ such that for every $j$, $0 \leq j \leq n$, $x_j$ equals the number of times $j$ appears in the sequence.

1967 IMO Longlists, 51

A subset $S$ of the set of integers 0 - 99 is said to have property $A$ if it is impossible to fill a crossword-puzzle with 2 rows and 2 columns with numbers in $S$ (0 is written as 00, 1 as 01, and so on). Determine the maximal number of elements in the set $S$ with the property $A.$

2024 Korea Junior Math Olympiad (First Round), 15.

In the following illustration, starting from point X, we move one square along the segment until we arrive at point Y. Calculate the number of times a point has passed once and does not pass again, from X to Y. (However, starting point X is considered to have passed.)

2015 Bundeswettbewerb Mathematik Germany, 3

Each of the positive integers $1,2,\dots,n$ is colored in one of the colors red, blue or yellow regarding the following rules: (1) A Number $x$ and the smallest number larger than $x$ colored in the same color as $x$ always have different parities. (2) If all colors are used in a coloring, then there is exactly one color, such that the smallest number in that color is even. Find the number of possible colorings.

1969 IMO Longlists, 22

$(FRA 5)$ Let $\alpha(n)$ be the number of pairs $(x, y)$ of integers such that $x+y = n, 0 \le y \le x$, and let $\beta(n)$ be the number of triples $(x, y, z)$ such that$ x + y + z = n$ and $0 \le z \le y \le x.$ Find a simple relation between $\alpha(n)$ and the integer part of the number $\frac{n+2}{2}$ and the relation among $\beta(n), \beta(n -3)$ and $\alpha(n).$ Then evaluate $\beta(n)$ as a function of the residue of $n$ modulo $6$. What can be said about $\beta(n)$ and $1+\frac{n(n+6)}{12}$? And what about $\frac{(n+3)^2}{6}$? Find the number of triples $(x, y, z)$ with the property $x+ y+ z \le n, 0 \le z \le y \le x$ as a function of the residue of $n$ modulo $6.$What can be said about the relation between this number and the number $\frac{(n+6)(2n^2+9n+12)}{72}$?

2017 AMC 10, 23

Tags: counting
How many triangles with positive area have all their vertices at points $(i,j)$ in the coordinate plane, where $i$ and $j$ are integers between $1$ and $5$, inclusive? $\textbf{(A)}\ 2128 \qquad\textbf{(B)}\ 2148 \qquad\textbf{(C)}\ 2160 \qquad\textbf{(D)}\ 2200 \qquad\textbf{(E)}\ 2300$

2022 Bosnia and Herzegovina IMO TST, 4

In each square of a $4 \times 4$ table a number $0$ or $1$ is written, such that the product of every two neighboring squares is $0$ (neighboring by side). $a)$ In how many ways is this possible to do if the middle $2\times 2$ is filled with $4$ zeros? $b)$ In general, in how many ways is this possible to do (regardless of the middle $2 \times 2$)?

2006 Pan African, 5

In how many ways can the integers from $1$ to $2006$ be divided into three non-empty disjoint sets so that none of these sets contains a pair of consecutive integers?

2011 ELMO Shortlist, 6

Let $Q(x)$ be a polynomial with integer coefficients. Prove that there exists a polynomial $P(x)$ with integer coefficients such that for every integer $n\ge\deg{Q}$, \[\sum_{i=0}^{n}\frac{!i P(i)}{i!(n-i)!} = Q(n),\]where $!i$ denotes the number of derangements (permutations with no fixed points) of $1,2,\ldots,i$. [i]Calvin Deng.[/i]

2016 India Regional Mathematical Olympiad, 4

Find the number of all 6-digits numbers having exactly three odd and three even digits.

1982 IMO Longlists, 8

A box contains $p$ white balls and $q$ black balls. Beside the box there is a pile of black balls. Two balls are taken out of the box. If they have the same color, a black ball from the pile is put into the box. If they have different colors, the white ball is put back into the box. This procedure is repeated until the last two balls are removed from the box and one last ball is put in. What is the probability that this last ball is white?

2008 Harvard-MIT Mathematics Tournament, 3

There are $ 5$ dogs, $ 4$ cats, and $ 7$ bowls of milk at an animal gathering. Dogs and cats are distinguishable, but all bowls of milk are the same. In how many ways can every dog and cat be paired with either a member of the other species or a bowl of milk such that all the bowls of milk are taken?

1976 IMO Longlists, 48

The polynomial $1976(x+x^2+ \cdots +x^n)$ is decomposed into a sum of polynomials of the form $a_1x + a_2x^2 + \cdots + a_nx^n$, where $a_1, a_2, \ldots , a_n$ are distinct positive integers not greater than $n$. Find all values of $n$ for which such a decomposition is possible.

1970 IMO Longlists, 58

Given $100$ coplanar points, no three collinear, prove that at most $70\%$ of the triangles formed by the points have all angles acute.

2011 District Olympiad, 2

Tags: counting , algebra
Let $ n $ be a natural number. How many numbers of the form $ \pm 1\pm 2\pm 3\pm\cdots\pm n $ are there?

1998 IMO Shortlist, 4

For any two nonnegative integers $n$ and $k$ satisfying $n\geq k$, we define the number $c(n,k)$ as follows: - $c\left(n,0\right)=c\left(n,n\right)=1$ for all $n\geq 0$; - $c\left(n+1,k\right)=2^{k}c\left(n,k\right)+c\left(n,k-1\right)$ for $n\geq k\geq 1$. Prove that $c\left(n,k\right)=c\left(n,n-k\right)$ for all $n\geq k\geq 0$.

2011 Ukraine Team Selection Test, 2

2500 chess kings have to be placed on a $100 \times 100$ chessboard so that [b](i)[/b] no king can capture any other one (i.e. no two kings are placed in two squares sharing a common vertex); [b](ii)[/b] each row and each column contains exactly 25 kings. Find the number of such arrangements. (Two arrangements differing by rotation or symmetry are supposed to be different.) [i]Proposed by Sergei Berlov, Russia[/i]

2009 Germany Team Selection Test, 3

Let $ S \equal{} \{x_1, x_2, \ldots, x_{k \plus{} l}\}$ be a $ (k \plus{} l)$-element set of real numbers contained in the interval $ [0, 1]$; $ k$ and $ l$ are positive integers. A $ k$-element subset $ A\subset S$ is called [i]nice[/i] if \[ \left |\frac {1}{k}\sum_{x_i\in A} x_i \minus{} \frac {1}{l}\sum_{x_j\in S\setminus A} x_j\right |\le \frac {k \plus{} l}{2kl}\] Prove that the number of nice subsets is at least $ \dfrac{2}{k \plus{} l}\dbinom{k \plus{} l}{k}$. [i]Proposed by Andrey Badzyan, Russia[/i]

2010 National Olympiad First Round, 16

$11$ different books are on a $3$-shelf bookcase. In how many different ways can the books be arranged such that at most one shelf is empty? $ \textbf{(A)}\ 75\cdot 11! \qquad\textbf{(B)}\ 62\cdot 11! \qquad\textbf{(C)}\ 68\cdot 12! \qquad\textbf{(D)}\ 12\cdot 13! \qquad\textbf{(E)}\ 6 \cdot 13! $

2007 Purple Comet Problems, 15

We have some identical paper squares which are black on one side of the sheet and white on the other side. We can join nine squares together to make a $3$ by $3$ sheet of squares by placing each of the nine squares either white side up or black side up. Two of these $3$ by $3$ sheets are distinguishable if neither can be made to look like the other by rotating the sheet or by turning it over. How many distinguishable $3$ by $3$ squares can we form?

2006 Korea National Olympiad, 8

$27$ students are given a number from $1$ to $27.$ How many ways are there to divide $27$ students into $9$ groups of $3$ with the following condition? (i) The sum of students number in each group is $1\pmod{3}$ (ii) There are no such two students where their numbering differs by $3.$

2014 AMC 10, 24

The numbers 1, 2, 3, 4, 5 are to be arranged in a circle. An arrangement is [i]bad[/i] if it is not true that for every $n$ from $1$ to $15$ one can find a subset of the numbers that appear consecutively on the circle that sum to $n$. Arrangements that differ only by a rotation or a reflection are considered the same. How many different bad arrangements are there? $ \textbf {(A) } 1 \qquad \textbf {(B) } 2 \qquad \textbf {(C) } 3 \qquad \textbf {(D) } 4 \qquad \textbf {(E) } 5 $