This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 348

1967 Miklós Schweitzer, 9

Let $ F$ be a surface of nonzero curvature that can be represented around one of its points $ P$ by a power series and is symmetric around the normal planes parallel to the principal directions at $ P$. Show that the derivative with respect to the arc length of the curvature of an arbitrary normal section at $ P$ vanishes at $ P$. Is it possible to replace the above symmetry condition by a weaker one? [i]A. Moor[/i]

2013 Today's Calculation Of Integral, 863

For $0<t\leq 1$, let $F(t)=\frac{1}{t}\int_0^{\frac{\pi}{2}t} |\cos 2x|\ dx.$ (1) Find $\lim_{t\rightarrow 0} F(t).$ (2) Find the range of $t$ such that $F(t)\geq 1.$

2009 Moldova Team Selection Test, 2

[color=darkred]Let $ m,n\in \mathbb{N}$, $ n\ge 2$ and numbers $ a_i > 0$, $ i \equal{} \overline{1,n}$, such that $ \sum a_i \equal{} 1$. Prove that $ \small{\dfrac{a_1^{2 \minus{} m} \plus{} a_2 \plus{} ... \plus{} a_{n \minus{} 1}}{1 \minus{} a_1} \plus{} \dfrac{a_2^{2 \minus{} m} \plus{} a_3 \plus{} ... \plus{} a_n}{1 \minus{} a_1} \plus{} ... \plus{} \dfrac{a_n^{2 \minus{} m} \plus{} a_1 \plus{} ... \plus{} a_{n \minus{} 2}}{1 \minus{} a_1}\ge n \plus{} \dfrac{n^m \minus{} n}{n \minus{} 1}}$[/color]

2010 Today's Calculation Of Integral, 565

Prove that $ f(x)\equal{}\int_0^1 e^{\minus{}|t\minus{}x|}t(1\minus{}t)dt$ has maximal value at $ x\equal{}\frac 12$.

2010 Today's Calculation Of Integral, 522

Find $ \lim_{a\rightarrow{\infty}} \frac{1}{a^2}\int_0^a \ln (1\plus{}e^x)dx$.

2012 NIMO Problems, 2

For which positive integer $n$ is the quantity $\frac{n}{3} + \frac{40}{n}$ minimized? [i]Proposed by Eugene Chen[/i]

Gheorghe Țițeica 2024, P2

Find all monotonic and twice differentiable functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that $$f''+4f+3f^2+8f^3=0.$$

2018 Miklós Schweitzer, 9

Let $f:\mathbb{C} \to \mathbb{C}$ be an entire function, and suppose that the sequence $f^{(n)}$ of derivatives converges pointwise. Prove that $f^{(n)}(z)\to Ce^z$ pointwise for a suitable complex number $C$.

2010 Today's Calculation Of Integral, 552

Find the positive value of $ a$ such that the curve $ C_1: x \equal{} \sqrt {2y^2 \plus{} \frac {25}{2}}$ tangent to the parabola $ C_2: y \equal{} ax^2$, then find the equation of the tangent line of $ C_1$ at the point of tangency.

2005 Harvard-MIT Mathematics Tournament, 4

Let $ f : \mathbf {R} \to \mathbf {R} $ be a smooth function such that $ f'(x)^2 = f(x) f''(x) $ for all $x$. Suppose $f(0)=1$ and $f^{(4)} (0) = 9$. Find all possible values of $f'(0)$.

1991 USAMO, 2

For any nonempty set $\,S\,$ of numbers, let $\,\sigma(S)\,$ and $\,\pi(S)\,$ denote the sum and product, respectively, of the elements of $\,S\,$. Prove that \[ \sum \frac{\sigma(S)}{\pi(S)} = (n^2 + 2n) - \left(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} \right) (n+1), \] where ``$\Sigma$'' denotes a sum involving all nonempty subsets $S$ of $\{1,2,3, \ldots,n\}$.

2007 Kazakhstan National Olympiad, 1

Zeros of a fourth-degree polynomial $f (x)$ form an arithmetic progression. Prove that the zeros of $f '(x)$ also form an arithmetic progression.

2007 F = Ma, 2

The graph shows velocity as a function of time for a car. What was the acceleration at time = $90$ seconds? [asy] size(275); pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); draw((0,0)--(6,0)); draw((0,1)--(6,1)); draw((0,2)--(6,2)); draw((0,3)--(6,3)); draw((0,4)--(6,4)); draw((0,0)--(0,4)); draw((1,0)--(1,4)); draw((2,0)--(2,4)); draw((3,0)--(3,4)); draw((4,0)--(4,4)); draw((5,0)--(5,4)); draw((6,0)--(6,4)); label("$0$",(0,0),S); label("$30$",(1,0),S); label("$60$",(2,0),S); label("$90$",(3,0),S); label("$120$",(4,0),S); label("$150$",(5,0),S); label("$180$",(6,0),S); label("$0$",(0,0),W); label("$10$",(0,1),W); label("$20$",(0,2),W); label("$30$",(0,3),W); label("$40$",(0,4),W); draw((0,0.6)--(0.1,0.55)--(0.8,0.55)--(1.2,0.65)--(1.9,1)--(2.2,1.2)--(3,2)--(4,3)--(4.45,3.4)--(4.5,3.5)--(4.75,3.7)--(5,3.7)--(5.5,3.45)--(6,3)); label("Time (s)", (7.5,0),S); label("Velocity (m/s)",(-1,3),W); [/asy] $ \textbf{(A)}\ 0.2\text{ m/s}^2\qquad\textbf{(B)}\ 0.33\text{ m/s}^2\qquad\textbf{(C)}\ 1.0\text{ m/s}^2\qquad\textbf{(D)}\ 9.8\text{ m/s}^2\qquad\textbf{(E)}\ 30\text{ m/s}^2 $

1962 Putnam, A4

Assume that $|f(x)|\leq 1$ and $|f''(x)|\leq 1$ for all $x$ on an interval of length at least $2.$ Show that $|f'(x)|\leq 2 $ on the interval.

2014 AMC 12/AHSME, 25

The parabola $P$ has focus $(0,0)$ and goes through the points $(4,3)$ and $(-4,-3)$. For how many points $(x,y)\in P$ with integer coefficients is it true that $|4x+3y|\leq 1000$? $\textbf{(A) }38\qquad \textbf{(B) }40\qquad \textbf{(C) }42\qquad \textbf{(D) }44\qquad \textbf{(E) }46\qquad$

1992 Putnam, B4

Let $p(x)$ be a nonzero polynomial of degree less than $1992$ having no nonconstant factor in common with $x^3 -x$. Let $$ \frac{d^{1992}}{dx^{1992}} \left( \frac{p(x)}{x^3 -x } \right) =\frac{f(x)}{g(x)}$$ for polynomials $f(x)$ and $g(x).$ Find the smallest possible degree of $f(x)$.

2007 Today's Calculation Of Integral, 255

Find the value of $ a$ for which the area of the figure surrounded by $ y \equal{} e^{ \minus{} x}$ and $ y \equal{} ax \plus{} 3\ (a < 0)$ is minimized.

2013 ELMO Shortlist, 5

Let $a,b,c$ be positive reals satisfying $a+b+c = \sqrt[7]{a} + \sqrt[7]{b} + \sqrt[7]{c}$. Prove that $a^a b^b c^c \ge 1$. [i]Proposed by Evan Chen[/i]

2008 Romania National Olympiad, 2

Let $ f: [0,1]\to\mathbb R$ be a derivable function, with a continuous derivative $ f'$ on $ [0,1]$. Prove that if $ f\left( \frac 12\right) \equal{} 0$, then \[ \int^1_0 \left( f'(x) \right)^2 dx \geq 12 \left( \int^1_0 f(x) dx \right)^2.\]

1959 Putnam, A7

If $f$ is a real-valued function of one real variable which has a continuous derivative on the closed interval $[a,b]$ and for which there is no $x\in [a,b]$ such that $f(x)=f'(x)=0$, then prove that there is a function $g$ with continuous first derivative on $[a,b]$ such that $fg'-f'g$ is positive on $[a,b].$

2011 Bogdan Stan, 4

Let be an open interval $ I $ and a convex function $ f:I\longrightarrow\mathbb{R} . $ Prove that the lateral derivatives of $ f $ are left-continuous on $ \mathbb{R} $ and also right-continuous on $ \mathbb{R} . $ [i]Marin Tolosi[/i]

2006 South africa National Olympiad, 2

Triangle $ABC$ has $BC=1$ and $AC=2$. What is the maximum possible value of $\hat{A}$.

2010 Laurențiu Panaitopol, Tulcea, 3

Let be a twice-differentiable function $ f:\mathbb{R}\longrightarrow\mathbb{R} $ that has the properties that: $ \text{(i) supp} f''=f\left(\mathbb{R}\right) $ $ \text{(ii)}\exists g:\mathbb{R}\longrightarrow\mathbb{R}\quad\forall x\in\mathbb{R}\quad f(x+1)=f(x)+f'\left( g(x)\right)\text{ and } f'(x+1)=f'(x)+f''\left( g(x)\right) $ Prove that: [b]a)[/b] any such $ g $ is injective. [b]b)[/b] $ f $ is of class $ C^{\infty } , $ and for any natural number $ n, $ any real number $ x $ and any such $ g, $ $$f^{(n)}(x+1)=f^{(n)}(x)+f^{(n+1)}\left( g(x)\right) . $$ [i]Laurențiu Panaitopol[/i]

1998 IMC, 4

The function $f: \mathbb{R}\rightarrow\mathbb{R}$ is twice differentiable and satisfies $f(0)=2,f'(0)=-2,f(1)=1$. Prove that there is a $\xi \in ]0,1[$ for which we have $f(\xi)\cdot f'(\xi)+f''(\xi)=0$.

1994 Vietnam Team Selection Test, 3

Calculate \[T = \sum \frac{1}{n_1! \cdot n_2! \cdot \cdots n_{1994}! \cdot (n_2 + 2 \cdot n_3 + 3 \cdot n_4 + \ldots + 1993 \cdot n_{1994})!}\] where the sum is taken over all 1994-tuples of the numbers $n_1, n_2, \ldots, n_{1994} \in \mathbb{N} \cup \{0\}$ satisfying $n_1 + 2 \cdot n_2 + 3 \cdot n_3 + \ldots + 1994 \cdot n_{1994} = 1994.$