This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 348

2014 District Olympiad, 2

Let $f:[0,1]\rightarrow{\mathbb{R}}$ be a differentiable function, with continuous derivative, and let \[ s_{n}=\sum_{k=1}^{n}f\left( \frac{k}{n}\right) \] Prove that the sequence $(s_{n+1}-s_{n})_{n\in{\mathbb{N}}^{\ast}}$ converges to $\int_{0}^{1}f(x)\mathrm{d}x$.

2012 Today's Calculation Of Integral, 859

In the $x$-$y$ plane, for $t>0$, denote by $S(t)$ the area of the part enclosed by the curve $y=e^{t^2x}$, the $x$-axis, $y$-axis and the line $x=\frac{1}{t}.$ Show that $S(t)>\frac 43.$ If necessary, you may use $e^3>20.$

2009 Indonesia TST, 3

Let $ x,y,z$ be real numbers. Find the minimum value of $ x^2\plus{}y^2\plus{}z^2$ if $ x^3\plus{}y^3\plus{}z^3\minus{}3xyz\equal{}1$.

1956 Putnam, A4

Suppose that the $n$ times differentiable real function $f(x)$ has at least $n+1$ distinct zeros in the closed interval $[a,b]$ and that the polynomial $P(z)=z^n +c_{n-1}z^{n-1}+\ldots+c_1 x +c_0$ has only real zeroes. Show that $f^{(n)}(x)+ c_{n-1} f^{(n-1)}(x) +\ldots +c_1 f'(x)+ c_0 f(x)$ has at least one zero in $[a,b]$, where $f^{(n)}$ denotes the $n$-th derivative of $f.$

1976 USAMO, 2

If $ A$ and $ B$ are fixed points on a given circle and $ XY$ is a variable diameter of the same circle, determine the locus of the point of intersection of lines $ AX$ and $ BY$. You may assume that $ AB$ is not a diameter.

1988 Flanders Math Olympiad, 4

Be $R$ a positive real number. If $R, 1, R+\frac12$ are triangle sides, call $\theta$ the angle between $R$ and $R+\frac12$ (in rad). Prove $2R\theta$ is between $1$ and $\pi$.

2011 Today's Calculation Of Integral, 736

Evaluate \[\int_0^1 \frac{(e^x+1)\{e^x+1+(1+x+e^x)\ln (1+x+e^x)\}}{1+x+e^x}\ dx\]

2023 239 Open Mathematical Olympiad, 8

Let $r\geqslant 0$ be a real number and define $f(x)=1/(1+x^2)^r$. Prove that \[|f^{(k)}(x)|\leqslant\frac{2r\cdot(2r+1)\cdots(2r+k-1)}{(1+x^2)^{r+k/2}},\]for every natural number $k{}$. Here, $f^{(k)}(x)$ denotes the $k^{\text{th}}$ derivative of $f$.

2007 Putnam, 5

Let $ k$ be a positive integer. Prove that there exist polynomials $ P_0(n),P_1(n),\dots,P_{k\minus{}1}(n)$ (which may depend on $ k$) such that for any integer $ n,$ \[ \left\lfloor\frac{n}{k}\right\rfloor^k\equal{}P_0(n)\plus{}P_1(n)\left\lfloor\frac{n}{k}\right\rfloor\plus{} \cdots\plus{}P_{k\minus{}1}(n)\left\lfloor\frac{n}{k}\right\rfloor^{k\minus{}1}.\] ($ \lfloor a\rfloor$ means the largest integer $ \le a.$)

2011 National Olympiad First Round, 35

Which of these has the smallest maxima on positive real numbers? $\textbf{(A)}\ \frac{x^2}{1+x^{12}} \qquad\textbf{(B)}\ \frac{x^3}{1+x^{11}} \qquad\textbf{(C)}\ \frac{x^4}{1+x^{10}} \qquad\textbf{(D)}\ \frac{x^5}{1+x^{9}} \qquad\textbf{(E)}\ \frac{x^6}{1+x^{8}}$

2005 Today's Calculation Of Integral, 73

Find the minimum value of $\int_0^{\pi} (a\sin x+b\sin 2x+c\sin 3x-x)^2\ dx$

1940 Putnam, A2

Let $A,B$ be two fixed points on the curve $y=f(x)$, $f$ is continuous with continuous derivative and the arc $\widehat{AB}$ is concave to the chord $AB$. If $P$ is a point on the arc $\widehat{AB}$ for which $AP+PB$ is maximal, prove that $PA$ and $PB$ are equally inclined to the tangent to the curve $y=f(x)$ at $P$.

2007 Harvard-MIT Mathematics Tournament, 15

Points $A$, $B$, and $C$ lie in that order on line $\ell$ such that $AB=3$ and $BC=2$. Point $H$ is such that $CH$ is perpendicular to $\ell$. Determine the length $CH$ such that $\angle AHB$ is as large as possible.

1992 Putnam, A4

Let $ f$ be an infinitely differentiable real-valued function defined on the real numbers. If $ f(1/n)\equal{}\frac{n^{2}}{n^{2}\plus{}1}, n\equal{}1,2,3,...,$ Compute the values of the derivatives of $ f^{k}(0), k\equal{}0,1,2,3,...$

2010 Harvard-MIT Mathematics Tournament, 1

Suppose that $p(x)$ is a polynomial and that $p(x)-p^\prime (x)=x^2+2x+1$. Compute $p(5)$.

2025 Romania National Olympiad, 3

Prove that, for a function $f \colon \mathbb{R} \to \mathbb{R}$, the following $2$ statements are equivalent: a) $f$ is differentiable, with continuous first derivative. b) For any $a\in\mathbb{R}$ and for any two sequences $(x_n)_{n\geq 1},(y_n)_{n\geq 1}$, convergent to $a$, such that $x_n \neq y_n$ for any positive integer $n$, the sequence $\left(\frac{f(x_n)-f(y_n)}{x_n-y_n}\right)_{n\geq 1}$ is convergent.

2006 Swedish Mathematical Competition, 3

A cubic polynomial $f$ with a positive leading coefficient has three different positive zeros. Show that $f'(a)+ f'(b)+ f'(c) > 0$.

Today's calculation of integrals, 860

For a function $f(x)\ (x\geq 1)$ satisfying $f(x)=(\log_e x)^2-\int_1^e \frac{f(t)}{t}dt$, answer the questions as below. (a) Find $f(x)$ and the $y$-coordinate of the inflection point of the curve $y=f(x)$. (b) Find the area of the figure bounded by the tangent line of $y=f(x)$ at the point $(e,\ f(e))$, the curve $y=f(x)$ and the line $x=1$.

2021 Nigerian MO Round 3, Problem 5

Let $f(x)=\frac{P(x)}{Q(x)}$, where $P(x), Q(x)$ are two non-constant polynomials with no common zeros and $P(0)=P(1)=0$. Suppose $f(x)f\left(\frac{1}{x}\right)=f(x)+f\left(\frac{1}{x}\right)$ for infinitely many values of $x$. a) Show that $\text{deg}(P)<\text{deg}(Q)$. b) Show that $P'(1)=2Q'(1)-\text{deg}(Q)\cdot Q(1)$. Here, $P'(x)$ denotes the derivative of $P(x)$ as usual.

2005 Today's Calculation Of Integral, 81

Prove the following inequality. \[\frac{1}{12}(\pi -6+2\sqrt{3})\leq \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \ln (1+\cos 2x) dx\leq \frac{1}{4}(2-\sqrt{3})\]

2006 Romania National Olympiad, 4

Let $f: [0,1]\to\mathbb{R}$ be a continuous function such that \[ \int_{0}^{1}f(x)dx=0. \] Prove that there is $c\in (0,1)$ such that \[ \int_{0}^{c}xf(x)dx=0. \] [i]Cezar Lupu, Tudorel Lupu[/i]

2006 Romania National Olympiad, 4

Let $a,b,c \in \left[ \frac 12, 1 \right]$. Prove that \[ 2 \leq \frac{ a+b}{1+c} + \frac{ b+c}{1+a} + \frac{ c+a}{1+b} \leq 3 . \] [i]selected by Mircea Lascu[/i]

1990 IMO Longlists, 35

Prove that if $|x| < 1$, then \[ \frac{x}{(1-x)^2}+\frac{x^2}{(1+x^2)^2} + \frac{x^3}{(1-x^3)^2}+\cdots=\frac{x}{1-x}+\frac{2x^2}{1+x^2}+\frac{3x^3}{1-x^3}+\cdots\]

2008 India Regional Mathematical Olympiad, 3

Suppose $ a$ and $ b$ are real numbers such that the roots of the cubic equation $ ax^3\minus{}x^2\plus{}bx\minus{}1$ are positive real numbers. Prove that: \[ (i)\ 0<3ab\le 1\text{ and }(i)\ b\ge \sqrt{3} \] [19 points out of 100 for the 6 problems]

2005 Korea National Olympiad, 4

Find all $f: \mathbb R \to\mathbb R$ such that for all real numbers $x$, $f(x) \geq 0$ and for all real numbers $x$ and $y$, \[ f(x+y)+f(x-y)-2f(x)-2y^2=0. \]