This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 348

Today's calculation of integrals, 859

In the $x$-$y$ plane, for $t>0$, denote by $S(t)$ the area of the part enclosed by the curve $y=e^{t^2x}$, the $x$-axis, $y$-axis and the line $x=\frac{1}{t}.$ Show that $S(t)>\frac 43.$ If necessary, you may use $e^3>20.$

1996 Vietnam National Olympiad, 3

Prove that:$a+b+c+d \geq \frac{2}{3}(ab+bc+ca+ad+ac+bd)$ where $a;b;c;d$ are positive real numbers satisfying $2(ab+bc+cd+da+ac+bd)+abc+bcd+cda+dab=16$

2009 Harvard-MIT Mathematics Tournament, 10

Let $a$ and $b$ be real numbers satisfying $a>b>0$. Evaluate \[\int_0^{2\pi}\dfrac{1}{a+b\cos(\theta)}d\theta.\] Express your answer in terms of $a$ and $b$.

2010 Today's Calculation Of Integral, 636

Let $a>1$ be a constant. In the $xy$-plane, let $A(a,\ 0),\ B(a,\ \ln a)$ and $C$ be the intersection point of the curve $y=\ln x$ and the $x$-axis. Denote by $S_1$ the area of the part bounded by the $x$-axis, the segment $BA$ and the curve $y=\ln x$ (1) For $1\leq b\leq a$, let $D(b,\ \ln b)$. Find the value of $b$ such that the area of quadrilateral $ABDC$ is the closest to $S_1$ and find the area $S_2$. (2) Find $\lim_{a\rightarrow \infty} \frac{S_2}{S_1}$. [i]1992 Tokyo University entrance exam/Science[/i]

1997 IMC, 1

Let $f\in C^3(\mathbb{R})$ nonnegative function with $f(0)=f'(0)=0, f''(0)>0$. Define $g(x)$ as follows: \[ \{ \begin{array}{ccc}g(x)= (\frac{\sqrt{f(x)}}{f'(x)})' &\text{for}& x\not=0 \\ g(x)=0 &\text{for}& x=0\end{array} \] (a) Show that $g$ is bounded in some neighbourhood of $0$. (b) Is the above true for $f\in C^2(\mathbb{R})$?

2010 Contests, A3

Suppose that the function $h:\mathbb{R}^2\to\mathbb{R}$ has continuous partial derivatives and satisfies the equation \[h(x,y)=a\frac{\partial h}{\partial x}(x,y)+b\frac{\partial h}{\partial y}(x,y)\] for some constants $a,b.$ Prove that if there is a constant $M$ such that $|h(x,y)|\le M$ for all $(x,y)$ in $\mathbb{R}^2,$ then $h$ is identically zero.

1990 Turkey Team Selection Test, 2

For real numbers $x_i$, the statement \[ x_1 + x_2 + x_3 = 0 \Rightarrow x_1x_2 + x_2x_3 + x_3x_1 \leq 0\] is always true. (Prove!) For which $n\geq 4$ integers, the statement \[x_1 + x_2 + \dots + x_n = 0 \Rightarrow x_1x_2 + x_2x_3 + \dots + x_{n-1}x_n + x_nx_1 \leq 0\] is always true. Justify your answer.

2008 Harvard-MIT Mathematics Tournament, 7

([b]5[/b]) Find $ p$ so that $ \lim_{x\rightarrow\infty}x^p\left(\sqrt[3]{x\plus{}1}\plus{}\sqrt[3]{x\minus{}1}\minus{}2\sqrt[3]{x}\right)$ is some non-zero real number.

2004 France Team Selection Test, 1

Let $n$ be a positive integer, and $a_1,...,a_n, b_1,..., b_n$ be $2n$ positive real numbers such that $a_1 + ... + a_n = b_1 + ... + b_n = 1$. Find the minimal value of $ \frac {a_1^2} {a_1 + b_1} + \frac {a_2^2} {a_2 + b_2} + ...+ \frac {a_n^2} {a_n + b_n}$.

1950 Miklós Schweitzer, 6

Consider an arc of a planar curve; let the radius of curvature at any point of the arc be a differentiable function of the arc length and its derivative be everywhere different from zero; moreover, let the total curvature be less than $ \frac{\pi}{2}$. Let $ P_1,P_2,P_3,P_4,P_5$ and $ P_6$ be any points on this arc, subject to the only condition that the radius of curvature at $ P_k$ is greater than at $ P_j$ if $ j<k$. Prove that the radius of the circle passing through the points $ P_1,P_3$ and $ P_5$ is less than the radius of the circle through $ P_2,P_4$ and $ P_6$

2009 Tuymaada Olympiad, 4

Each of the subsets $ A_1$, $ A_2$, $ \dots,$ $ A_n$ of a 2009-element set $ X$ contains at least 4 elements. The intersection of every two of these subsets contains at most 2 elements. Prove that in $ X$ there is a 24-element subset $ B$ containing neither of the sets $ A_1$, $ A_2$, $ \dots,$ $ A_n$.

1941 Putnam, A2

Find the $n$-th derivative with respect to $x$ of $$\int_{0}^{x} \left(1+\frac{x-t}{1!}+\frac{(x-t)^{2}}{2!}+\ldots+\frac{(x-t)^{n-1}}{(n-1)!}\right)e^{nt} dt.$$

2008 Harvard-MIT Mathematics Tournament, 2

([b]3[/b]) Let $ \ell$ be the line through $ (0,0)$ and tangent to the curve $ y \equal{} x^3 \plus{} x \plus{} 16$. Find the slope of $ \ell$.

1997 Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Round 2, 10

The minimal value of $ f(x) \equal{} \sqrt{a^2 \plus{} x^2} \plus{} \sqrt{(x\minus{}b)^2 \plus{} c^2}$ is A. $ a\plus{}b\plus{}c$ B. $ \sqrt{a^2 \plus{} (b \plus{} c)^2}$ C. $ \sqrt{b^2 \plus{} (a\plus{}c)^2}$ D. $ \sqrt{(a\plus{}b)^2 \plus{} c^2}$ E. None of these

2005 China Western Mathematical Olympiad, 6

In isosceles right-angled triangle $ABC$, $CA = CB = 1$. $P$ is an arbitrary point on the sides of $ABC$. Find the maximum of $PA \cdot PB \cdot PC$.

2005 MOP Homework, 4

Consider an infinite array of integers. Assume that each integer is equal to the sum of the integers immediately above and immediately to the left. Assume that there exists a row $R_0$ such that all the number in the row are positive. Denote by $R_1$ the row below row $R_0$, by $R_2$ the row below row $R_1$, and so on. Show that for each positive integer $n$, row $R_n$ cannot contain more than $n$ zeros.

2010 Harvard-MIT Mathematics Tournament, 2

Let $f$ be a function such that $f(0)=1$, $f^\prime (0)=2$, and \[f^{\prime\prime}(t)=4f^\prime(t)-3f(t)+1\] for all $t$. Compute the $4$th derivative of $f$, evaluated at $0$.

2009 Bulgaria National Olympiad, 6

Prove that if $ a_{1},a_{2},\ldots,a_{n}$, $ b_{1},b_{2},\ldots,b_{n}$ are arbitrary taken real numbers and $ c_{1},c_{2},\ldots,c_{n}$ are positive real numbers, than $ \left(\sum_{i,j \equal{} 1}^{n}\frac {a_{i}a_{j}}{c_{i} \plus{} c_{j}}\right)\left(\sum_{i,j \equal{} 1}^{n}\frac {b_{i}b_{j}}{c_{i} \plus{} c_{j}}\right)\ge \left(\sum_{i,j \equal{} 1}^{n}\frac {a_{i}b_{j}}{c_{i} \plus{} c_{j}}\right)^{2}$.

2007 Today's Calculation Of Integral, 233

Find the minimum value of the following definite integral. $ \int_0^{\pi} (a\sin x \plus{} b\sin 3x \minus{} 1)^2\ dx.$

Today's calculation of integrals, 867

Express $\int_0^2 f(x)dx$ for any quadratic functions $f(x)$ in terms of $f(0),\ f(1)$ and $f(2).$

2012 Pre - Vietnam Mathematical Olympiad, 1

For $a,b,c>0: \; abc=1$ prove that \[a^3+b^3+c^3+6 \ge (a+b+c)^2\]

1983 USAMO, 2

Prove that the roots of\[x^5 + ax^4 + bx^3 + cx^2 + dx + e = 0\] cannot all be real if $2a^2 < 5b$.

PEN G Problems, 23

Let $f(x)=\prod_{n=1}^{\infty} \left( 1 + \frac{x}{2^n} \right)$. Show that at the point $x=1$, $f(x)$ and all its derivatives are irrational.

2011 Today's Calculation Of Integral, 740

Let $r$ be a positive constant. If 2 curves $C_1: y=\frac{2x^2}{x^2+1},\ C_2: y=\sqrt{r^2-x^2}$ have each tangent line at their point of intersection and at which their tangent lines are perpendicular each other, then find the area of the figure bounded by $C_1,\ C_2$.

2017 Romania National Olympiad, 4

Let be a function $ f $ of class $ \mathcal{C}^1[a,b] $ whose derivative is positive. Prove that there exists a real number $ c\in (a,b) $ such that $$ f(f(b))-f(f(a))=(f'(c))^2(b-a) . $$