This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 75

2014 AMC 12/AHSME, 13

A fancy bed and breakfast inn has $5$ rooms, each with a distinctive color-coded decor. One day $5$ friends arrive to spend the night. There are no other guests that night. The friends can room in any combination they wish, but with no more than $2$ friends per room. In how many ways can the innkeeper assign the guests to the rooms? $\textbf{(A) }2100\qquad \textbf{(B) }2220\qquad \textbf{(C) }3000\qquad \textbf{(D) }3120\qquad \textbf{(E) }3125\qquad$

2013 ELMO Shortlist, 8

We define the [i]Fibonacci sequence[/i] $\{F_n\}_{n\ge0}$ by $F_0=0$, $F_1=1$, and for $n\ge2$, $F_n=F_{n-1}+F_{n-2}$; we define the [i]Stirling number of the second kind[/i] $S(n,k)$ as the number of ways to partition a set of $n\ge1$ distinguishable elements into $k\ge1$ indistinguishable nonempty subsets. For every positive integer $n$, let $t_n = \sum_{k=1}^{n} S(n,k) F_k$. Let $p\ge7$ be a prime. Prove that \[ t_{n+p^{2p}-1} \equiv t_n \pmod{p} \] for all $n\ge1$. [i]Proposed by Victor Wang[/i]

2019 India PRMO, 27

We will say that a rearrangement of the letters of a word has no [i]fixed letters[/i] if, when the rearrangement is placed directly below the word, no column has the same letter repeated. For instance $HBRATA$ is a rearragnement with no fixed letter of $BHARAT$. How many distinguishable rearrangements with no fixed letters does $BHARAT$ have? (The two $A$s are considered identical.)

2010 ELMO Shortlist, 5

Let $n > 1$ be a positive integer. A 2-dimensional grid, infinite in all directions, is given. Each 1 by 1 square in a given $n$ by $n$ square has a counter on it. A [i]move[/i] consists of taking $n$ adjacent counters in a row or column and sliding them each by one space along that row or column. A [i]returning sequence[/i] is a finite sequence of moves such that all counters again fill the original $n$ by $n$ square at the end of the sequence. [list] [*] Assume that all counters are distinguishable except two, which are indistinguishable from each other. Prove that any distinguishable arrangement of counters in the $n$ by $n$ square can be reached by a returning sequence. [*] Assume all counters are distinguishable. Prove that there is no returning sequence that switches two counters and returns the rest to their original positions.[/list] [i]Mitchell Lee and Benjamin Gunby.[/i]

2011 Purple Comet Problems, 17

In how many distinguishable rearrangements of the letters ABCCDEEF does the A precede both C's, the F appears between the 2 C's, and the D appears after the F?

2007 AMC 12/AHSME, 16

Each face of a regular tetrahedron is painted either red, white or blue. Two colorings are considered indistinguishable if two congruent tetrahedra with those colorings can be rotated so that their appearances are identical. How many distinguishable colorings are possible? $ \textbf{(A)}\ 15 \qquad \textbf{(B)}\ 18 \qquad \textbf{(C)}\ 27 \qquad \textbf{(D)}\ 54 \qquad \textbf{(E)}\ 81$

2014 Harvard-MIT Mathematics Tournament, 4

Find the number of triples of sets $(A, B, C)$ such that: (a) $A, B, C \subseteq \{1, 2, 3, \dots , 8 \}$. (b) $|A \cap B| = |B \cap C| = |C \cap A| = 2$. (c) $|A| = |B| = |C| = 4$. Here, $|S|$ denotes the number of elements in the set $S$.

2010 AIME Problems, 10

Find the number of second-degree polynomials $ f(x)$ with integer coefficients and integer zeros for which $ f(0)\equal{}2010$.

2010 Contests, 3

Let $n > 1$ be a positive integer. A 2-dimensional grid, infinite in all directions, is given. Each 1 by 1 square in a given $n$ by $n$ square has a counter on it. A [i]move[/i] consists of taking $n$ adjacent counters in a row or column and sliding them each by one space along that row or column. A [i]returning sequence[/i] is a finite sequence of moves such that all counters again fill the original $n$ by $n$ square at the end of the sequence. [list] [*] Assume that all counters are distinguishable except two, which are indistinguishable from each other. Prove that any distinguishable arrangement of counters in the $n$ by $n$ square can be reached by a returning sequence. [*] Assume all counters are distinguishable. Prove that there is no returning sequence that switches two counters and returns the rest to their original positions.[/list] [i]Mitchell Lee and Benjamin Gunby.[/i]

2008 Harvard-MIT Mathematics Tournament, 3

Farmer John has $ 5$ cows, $ 4$ pigs, and $ 7$ horses. How many ways can he pair up the animals so that every pair consists of animals of different species? (Assume that all animals are distinguishable from each other.)

2015 AMC 10, 22

Eight people are sitting around a circular table, each holding a fair coin. All eight people flip their coins and those who flip heads stand while those who flip tails remain seated. What is the probability that no two adjacent people will stand? $\textbf{(A) }\dfrac{47}{256}\qquad\textbf{(B) }\dfrac{3}{16}\qquad\textbf{(C) }\dfrac{49}{256}\qquad\textbf{(D) }\dfrac{25}{128}\qquad\textbf{(E) }\dfrac{51}{256}$

1982 Dutch Mathematical Olympiad, 3

Five marbles are distributed at a random among seven urns. What is the expected number of urns with exactly one marble?

2007 Purple Comet Problems, 12

If you alphabetize all of the distinguishable rearrangements of the letters in the word [b]PURPLE[/b], find the number $n$ such that the word [b]PURPLE [/b]is the $n$th item in the list.

2018 PUMaC Combinatorics B, 3

In an election between $\text{A}$ and $\text{B}$, during the counting of the votes, neither candidate was more than $2$ votes ahead, and the vote ended in a tie, $6$ votes to $6$ votes. Two votes for the same candidate are indistinguishable. In how many orders could the votes have been counted? One possibility is $\text{AABBABBABABA}$.

2005 National Olympiad First Round, 8

How many natural number triples $(x,y,z)$ are there such that $xyz = 10^6$? $ \textbf{(A)}\ 568 \qquad\textbf{(B)}\ 784 \qquad\textbf{(C)}\ 812 \qquad\textbf{(D)}\ 816 \qquad\textbf{(E)}\ 824 $

2006 Pan African, 5

In how many ways can the integers from $1$ to $2006$ be divided into three non-empty disjoint sets so that none of these sets contains a pair of consecutive integers?

2008 Harvard-MIT Mathematics Tournament, 3

There are $ 5$ dogs, $ 4$ cats, and $ 7$ bowls of milk at an animal gathering. Dogs and cats are distinguishable, but all bowls of milk are the same. In how many ways can every dog and cat be paired with either a member of the other species or a bowl of milk such that all the bowls of milk are taken?

2010 National Olympiad First Round, 16

$11$ different books are on a $3$-shelf bookcase. In how many different ways can the books be arranged such that at most one shelf is empty? $ \textbf{(A)}\ 75\cdot 11! \qquad\textbf{(B)}\ 62\cdot 11! \qquad\textbf{(C)}\ 68\cdot 12! \qquad\textbf{(D)}\ 12\cdot 13! \qquad\textbf{(E)}\ 6 \cdot 13! $

2007 Purple Comet Problems, 15

We have some identical paper squares which are black on one side of the sheet and white on the other side. We can join nine squares together to make a $3$ by $3$ sheet of squares by placing each of the nine squares either white side up or black side up. Two of these $3$ by $3$ sheets are distinguishable if neither can be made to look like the other by rotating the sheet or by turning it over. How many distinguishable $3$ by $3$ squares can we form?

1989 AMC 12/AHSME, 24

Five people are sitting at a round table. Let $f \ge 0$ be the number of people sitting next to at least one female and $m \ge 0$ be the number of people sitting next to at least one male. The number of possible ordered pairs $(f,m)$ is $ \textbf{(A)}\ 7 \qquad\textbf{(B)}\ 8 \qquad\textbf{(C)}\ 9 \qquad\textbf{(D)}\ 10 \qquad\textbf{(E)}\ 11 $

2005 AMC 10, 9

Thee tiles are marked $ X$ and two other tiles are marked $ O$. The five tiles are randomly arranged in a row. What is the probability that the arrangement reads $ XOXOX$? $ \textbf{(A)}\ \frac{1}{12}\qquad \textbf{(B)}\ \frac{1}{10}\qquad \textbf{(C)}\ \frac{1}{6}\qquad \textbf{(D)}\ \frac{1}{4}\qquad \textbf{(E)}\ \frac{1}{3}$

2018 PUMaC Live Round, 2.3

Sophie has $20$ indistinguishable pairs of socks in a laundry bag. She pulls them out one at a time. After pulling out $30$ socks, the expected number of unmatched socks among the socks that she has pulled out can be expressed in simplest form as $\tfrac{m}{n}$. Find $m+n$.

2003 AIME Problems, 13

A bug starts at a vertex of an equilateral triangle. On each move, it randomly selects one of the two vertices where it is not currently located, and crawls along a side of the triangle to that vertex. Given that the probability that the bug moves to its starting vertex on its tenth move is $m/n,$ where $m$ and $n$ are relatively prime positive integers, find $m+n.$

1985 AMC 12/AHSME, 11

How many [b]distinguishable[/b] rearrangements of the letters in CONTEST have both the vowels first? (For instance, OETCNST is a one such arrangements but OTETSNC is not.) $ \textbf{(A)}\ 60\qquad \textbf{(B)}\ 120\qquad \textbf{(C)}\ 240\qquad \textbf{(D)}\ 720\qquad \textbf{(E)}\ 2520$

2012 Purple Comet Problems, 8

Seven boys and three girls are playing basketball. I how many different ways can they make two teams of five players so that both teams have at least one girl?