This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 125

1989 IMO Longlists, 91

For $ \phi: \mathbb{N} \mapsto \mathbb{Z}$ let us define \[ M_{\phi} \equal{} \{f: \mathbb{N} \mapsto \mathbb{Z}, f(x) > f(\phi(x)), \forall x \in \mathbb{N} \}.\] Prove that if $ M_{\phi_1} \equal{} M_{\phi_2} \neq \emptyset,$ then $ \phi_1 \equal{} \phi_2.$ Does this property remain true if \[ M_{\phi} \equal{} \{f: \mathbb{N} \mapsto \mathbb{N}, f(x) > f(\phi(x)), \forall x \in \mathbb{N} \}?\]

2012 Purple Comet Problems, 29

Let $A=\{1, 3, 5, 7, 9\}$ and $B=\{2, 4, 6, 8, 10\}$. Let $f$ be a randomly chosen function from the set $A\cup B$ into itself. There are relatively prime positive integers $m$ and $n$ such that $\frac{m}{n}$ is the probablity that $f$ is a one-to-one function on $A\cup B$ given that it maps $A$ one-to-one into $A\cup B$ and it maps $B$ one-to-one into $A\cup B$. Find $m+n$.

2010 Pan African, 3

Does there exist a function $f:\mathbb{Z}\to\mathbb{Z}$ such that $f(x+f(y))=f(x)-y$ for all integers $x$ and $y$?

2002 Czech and Slovak Olympiad III A, 4

Find all pairs of real numbers $a, b$ for which the equation in the domain of the real numbers \[\frac{ax^2-24x+b}{x^2-1}=x\] has two solutions and the sum of them equals $12$.

PEN P Problems, 21

Let $A$ be the set of positive integers of the form $a^2 +2b^2$, where $a$ and $b$ are integers and $b \neq 0$. Show that if $p$ is a prime number and $p^2 \in A$, then $p \in A$.

1961 AMC 12/AHSME, 13

Tags: algebra , function , domain
The symbol $|a|$ means $a$ is a positive number or zero, and $-a$ if $a$ is a negative number. For all real values of $t$ the expression $\sqrt{t^4+t^2}$ is equal to: ${{ \textbf{(A)}\ t^3 \qquad\textbf{(B)}\ t^2+t \qquad\textbf{(C)}\ |t^2+t| \qquad\textbf{(D)}\ t\sqrt{t^2+1} }\qquad\textbf{(E)}\ |t|\sqrt{1+t^2} } $

2014 AMC 12/AHSME, 21

For every real number $x$, let $\lfloor x\rfloor$ denote the greatest integer not exceeding $x$, and let \[f(x)=\lfloor x\rfloor(2014^{x-\lfloor x\rfloor}-1).\] The set of all numbers $x$ such that $1\leq x<2014$ and $f(x)\leq 1$ is a union of disjoint intervals. What is the sum of the lengths of those intervals? $\textbf{(A) }1\qquad \textbf{(B) }\dfrac{\log 2015}{\log 2014}\qquad \textbf{(C) }\dfrac{\log 2014}{\log 2013}\qquad \textbf{(D) }\dfrac{2014}{2013}\qquad \textbf{(E) }2014^{\frac1{2014}}\qquad$

2006 Iran MO (3rd Round), 6

$P,Q,R$ are non-zero polynomials that for each $z\in\mathbb C$, $P(z)Q(\bar z)=R(z)$. a) If $P,Q,R\in\mathbb R[x]$, prove that $Q$ is constant polynomial. b) Is the above statement correct for $P,Q,R\in\mathbb C[x]$?

2013 Math Prize For Girls Problems, 17

Let $f$ be the function defined by $f(x) = -2 \sin(\pi x)$. How many values of $x$ such that $-2 \le x \le 2$ satisfy the equation $f(f(f(x))) = f(x)$?

1975 AMC 12/AHSME, 17

Tags: function , algebra , domain
A man can commute either by train or by bus. If he goes to work on the train in the morning, he comes home on the bus in the afternoon; and if he comes home in the afternoon on the train, he took the bus in the morning. During a total of $ x$ working days, the man took the bus to work in the morning 8 times, came home by bus in the afternoon 15 times, and commuted by train (either morning or afternoon) 9 times. Find $ x$. $ \textbf{(A)}\ 19 \qquad \textbf{(B)}\ 18 \qquad \textbf{(C)}\ 17 \qquad \textbf{(D)}\ 16 \qquad$ $ \textbf{(E)}\ \text{not enough information given to solve the problem}$

1990 Brazil National Olympiad, 5

Let $f(x)=\frac{ax+b}{cx+d}$ $F_n(x)=f(f(f...f(x)...))$ (with $n\ f's$) Suppose that $f(0) \not =0$, $f(f(0)) \not = 0$, and for some $n$ we have $F_n(0)=0$, show that $F_n(x)=x$ (for any valid x).

2007 Romania Team Selection Test, 1

Let $\mathcal{F}$ be the set of all the functions $f : \mathcal{P}(S) \longrightarrow \mathbb{R}$ such that for all $X, Y \subseteq S$, we have $f(X \cap Y) = \min (f(X), f(Y))$, where $S$ is a finite set (and $\mathcal{P}(S)$ is the set of its subsets). Find \[\max_{f \in \mathcal{F}}| \textrm{Im}(f) |. \]

2003 AMC 12-AHSME, 25

Let $ f(x)\equal{}\sqrt{ax^2\plus{}bx}$. For how many real values of $ a$ is there at least one positive value of $ b$ for which the domain of $ f$ and the range of $ f$ are the same set? $ \textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ \text{infinitely many}$

2011 AMC 12/AHSME, 21

Tags: function , domain , algebra
Let $f_1(x)=\sqrt{1-x}$, and for integers $n \ge 2$, let $f_n(x)=f_{n-1}(\sqrt{n^2-x})$. If $N$ is the largest value of $n$ for which the domain of $f_n$ is nonempty, the domain of $f_N$ is ${c}$. What is $N+c$? $ \textbf{(A)}\ -226 \qquad \textbf{(B)}\ -144 \qquad \textbf{(C)}\ -20 \qquad \textbf{(D)}\ 20 \qquad \textbf{(E)}\ 144$

2013 AMC 12/AHSME, 14

The sequence \[\log_{12}{162},\, \log_{12}{x},\, \log_{12}{y},\, \log_{12}{z},\, \log_{12}{1250}\] is an arithmetic progression. What is $x$? $ \textbf{(A)} \ 125\sqrt{3} \qquad \textbf{(B)} \ 270 \qquad \textbf{(C)} \ 162\sqrt{5} \qquad \textbf{(D)} \ 434 \qquad \textbf{(E)} \ 225\sqrt{6}$

2011 Today's Calculation Of Integral, 769

In $xyz$ space, find the volume of the solid expressed by $x^2+y^2\leq z\le \sqrt{3}y+1.$

2005 Today's Calculation Of Integral, 80

Let $S$ be the domain surrounded by the two curves $C_1:y=ax^2,\ C_2:y=-ax^2+2abx$ for constant positive numbers $a,b$. Let $V_x$ be the volume of the solid formed by the revolution of $S$ about the axis of $x$, $V_y$ be the volume of the solid formed by the revolution of $S$ about the axis of $y$. Find the ratio of $\frac{V_x}{V_y}$.

2007 Balkan MO Shortlist, C2

Let $\mathcal{F}$ be the set of all the functions $f : \mathcal{P}(S) \longrightarrow \mathbb{R}$ such that for all $X, Y \subseteq S$, we have $f(X \cap Y) = \min (f(X), f(Y))$, where $S$ is a finite set (and $\mathcal{P}(S)$ is the set of its subsets). Find \[\max_{f \in \mathcal{F}}| \textrm{Im}(f) |. \]

1958 AMC 12/AHSME, 46

For values of $ x$ less than $ 1$ but greater than $ \minus{}4$, the expression \[ \frac{x^2 \minus{} 2x \plus{} 2}{2x \minus{} 2} \] has: $ \textbf{(A)}\ \text{no maximum or minimum value}\qquad \\ \textbf{(B)}\ \text{a minimum value of }{\plus{}1}\qquad \\ \textbf{(C)}\ \text{a maximum value of }{\plus{}1}\qquad \\ \textbf{(D)}\ \text{a minimum value of }{\minus{}1}\qquad \\ \textbf{(E)}\ \text{a maximum value of }{\minus{}1}$

2012 Balkan MO Shortlist, A6

Let $k$ be a positive integer. Find the maximum value of \[a^{3k-1}b+b^{3k-1}c+c^{3k-1}a+k^2a^kb^kc^k,\] where $a$, $b$, $c$ are non-negative reals such that $a+b+c=3k$.

1994 China Team Selection Test, 1

Given $5n$ real numbers $r_i, s_i, t_i, u_i, v_i \geq 1 (1 \leq i \leq n)$, let $R = \frac {1}{n} \sum_{i=1}^{n} r_i$, $S = \frac {1}{n} \sum_{i=1}^{n} s_i$, $T = \frac {1}{n} \sum_{i=1}^{n} t_i$, $U = \frac {1}{n} \sum_{i=1}^{n} u_i$, $V = \frac {1}{n} \sum_{i=1}^{n} v_i$. Prove that $\prod_{i=1}^{n}\frac {r_i s_i t_i u_i v_i + 1}{r_i s_i t_i u_i v_i - 1} \geq \left(\frac {RSTUV +1}{RSTUV - 1}\right)^n$.

2008 District Olympiad, 2

Tags: algebra , function , domain
Consider the positive reals $ x$, $ y$ and $ z$. Prove that: a) $ \arctan(x) \plus{} \arctan(y) < \frac {\pi}{2}$ iff $ xy < 1$. b) $ \arctan(x) \plus{} \arctan(y) \plus{} \arctan(z) < \pi$ iff $ xyz < x \plus{} y \plus{} z$.

2007 AMC 12/AHSME, 24

For each integer $ n > 1,$ let $ F(n)$ be the number of solutions of the equation $ \sin x \equal{} \sin nx$ on the interval $ [0,\pi].$ What is $ \sum_{n \equal{} 2}^{2007}F(n)?$ $ \textbf{(A)}\ 2,014,524 \qquad \textbf{(B)}\ 2,015,028 \qquad \textbf{(C)}\ 2,015,033 \qquad \textbf{(D)}\ 2,016,532 \qquad \textbf{(E)}\ 2,017,033$

2012 Putnam, 5

Let $\mathbb{F}_p$ denote the field of integers modulo a prime $p,$ and let $n$ be a positive integer. Let $v$ be a fixed vector in $\mathbb{F}_p^n,$ let $M$ be an $n\times n$ matrix with entries in $\mathbb{F}_p,$ and define $G:\mathbb{F}_p^n\to \mathbb{F}_p^n$ by $G(x)=v+Mx.$ Let $G^{(k)}$ denote the $k$-fold composition of $G$ with itself, that is, $G^{(1)}(x)=G(x)$ and $G^{(k+1)}(x)=G(G^{(k)}(x)).$ Determine all pairs $p,n$ for which there exist $v$ and $M$ such that the $p^n$ vectors $G^{(k)}(0),$ $k=1,2,\dots,p^n$ are distinct.

2014 PUMaC Algebra A, 3

A function $f$ has its domain equal to the set of integers $0$, $1$, $\ldots$, $11$, and $f(n)\geq 0$ for all such $n$, and $f$ satisfies [list] [*]$f(0)=0$ [*]$f(6)=1$ [*]If $x\geq 0$, $y\geq 0$, and $x+y\leq 11$, then $f(x+y)=\tfrac{f(x)+f(y)}{1-f(x)f(y)}$.[/list] Find $f(2)^2+f(10)^2$.