Found problems: 137
2007 Purple Comet Problems, 20
Three congruent ellipses are mutually tangent. Their major axes are parallel. Two of the ellipses are tangent at the end points of their minor axes as shown. The distance between the centers of these two ellipses is $4$. The distances from those two centers to the center of the third ellipse are both $14$. There are positive integers m and n so that the area between these three ellipses is $\sqrt{n}-m \pi$. Find $m+n$.
[asy]
size(250);
filldraw(ellipse((2.2,0),2,1),grey);
filldraw(ellipse((0,-2),4,2),white);
filldraw(ellipse((0,+2),4,2),white);
filldraw(ellipse((6.94,0),4,2),white);[/asy]
2011 ELMO Shortlist, 4
Prove that for any convex pentagon $A_1A_2A_3A_4A_5$, there exists a unique pair of points $\{P,Q\}$ (possibly with $P=Q$) such that $\measuredangle{PA_i A_{i-1}} = \measuredangle{A_{i+1}A_iQ}$ for $1\le i\le 5$, where indices are taken $\pmod5$ and angles are directed $\pmod\pi$.
[i]Calvin Deng.[/i]
2005 Taiwan National Olympiad, 3
Let the major axis of an ellipse be $AB$, let $O$ be its center, and let $F$ be one of its foci. $P$ is a point on the ellipse, and $CD$ a chord through $O$, such that $CD$ is parallel to the tangent of the ellipse at $P$. $PF$ and $CD$ intersect at $Q$. Compare the lengths of $PQ$ and $OA$.
2013 Today's Calculation Of Integral, 873
Let $a,\ b$ be positive real numbers. Consider the circle $C_1: (x-a)^2+y^2=a^2$ and the ellipse $C_2: x^2+\frac{y^2}{b^2}=1.$
(1) Find the condition for which $C_1$ is inscribed in $C_2$.
(2) Suppose $b=\frac{1}{\sqrt{3}}$ and $C_1$ is inscribed in $C_2$. Find the coordinate $(p,\ q)$ of the point of tangency in the first quadrant for $C_1$ and $C_2$.
(3) Under the condition in (1), find the area of the part enclosed by $C_1,\ C_2$ for $x\geq p$.
60 point
2009 India Regional Mathematical Olympiad, 5
A convex polygon is such that the distance between any two vertices does not exceed $ 1$.
$ (i)$ Prove that the distance between any two points on the boundary of the polygon does not exceed $ 1$.
$ (ii)$ If $ X$ and $ Y$ are two distinct points inside the polygon, prove that there exists a point $ Z$ on the boundary of the polygon such that $ XZ \plus{} YZ\le1$.
1995 Romania Team Selection Test, 1
Let AD be the altitude of a triangle ABC and E , F be the incenters of the triangle ABD and ACD , respectively. line EF meets AB and AC at K and L. prove tht AK=AL if and only if AB=AC or A=90
2015 Sharygin Geometry Olympiad, P20
Given are a circle and an ellipse lying inside it with focus $C$. Find the locus of the circumcenters of triangles $ABC$, where $AB$ is a chord of the circle touching the ellipse.
2014 Contests, 3
Let $B$ and $C$ be two fixed points on a circle centered at $O$ that are not diametrically opposed. Let $A$ be a variable point on the circle distinct from $B$ and $C$ and not belonging to the perpendicular bisector of $BC$. Let $H$ be the orthocenter of $\triangle ABC$, and $M$ and $N$ be the midpoints of the segments $BC$ and $AH$, respectively. The line $AM$ intersects the circle again at $D$, and finally, $NM$ and $OD$ intersect at $P$. Determine the locus of points $P$ as $A$ moves around the circle.
Revenge EL(S)MO 2024, 5
In triangle $ABC$ let the $A$-foot be $E$ and the $B$-excenter be $L$. Suppose the incircle of $ABC$ is tangent to $AC$ at $I$. Construct a hyperbola $\mathcal H$ through $A$ with $B$ and $C$ as the foci such that $A$ lies on the branch of the $\mathcal H$ closer to $C$. Construct an ellipse $\mathcal E$ passing through $I$ with $B$ and $C$ as the foci. Suppose $\mathcal E$ meets $\overline{AB}$ again at point $H$. Let $\overline{CH}$ and $\overline{BI}$ intersect the $C$-branch of $\mathcal H$ at points $M$ and $O$ respectively. Prove $E$, $L$, $M$, $O$ are concyclic.
Proposed by [i]Alex Wang[/i]
2020 DMO Stage 1, 5.
[b]Q.[/b] Let $ABC$ be a triangle, where $L_A, L_B, L_C$ denote the internal angle bisectors of $\angle BAC, \angle ABC, \angle ACB$ respectively and $\ell_A, \ell_B, \ell_C$, the altitudes from the corresponding vertices. Suppose $ L_A\cap \overline{BC} = \{A_1\}$, $\ell_A \cap \overline{BC} = \{A_2\}$ and the circumcircle of $\triangle AA_1A_2$ meets $AB$ and $AC$ at $S$ and $T$ respectively. If $\overline{ST} \cap \overline{BC} = \{A'\}$, prove that $A',B',C'$ are collinear, where $B'$ and $C'$ are defined in a similar manner.
[i]Proposed by Functional_equation[/i]
2024 ELMO Shortlist, G8
Let $ABC$ be a triangle, and let $D$ be a point on the internal angle bisector of $BAC$. Let $x$ be the ellipse with foci $B$ and $C$ passing through $D$, $y$ be the ellipse with foci $A$ and $C$ passing through $D$, and $z$ be the ellipse with foci $A$ and $B$ passing through $D$. Ellipses $x$ and $z$ intersect at distinct points $D$ and $E$, and ellipses $x$ and $y$ intersect at distinct points $D$ and $F$. Prove that $AD$ bisects angle $EAF$.
[i]Andrew Carratu[/i]
1962 AMC 12/AHSME, 15
Given triangle $ ABC$ with base $ AB$ fixed in length and position. As the vertex $ C$ moves on a straight line, the intersection point of the three medians moves on:
$ \textbf{(A)}\ \text{a circle} \qquad
\textbf{(B)}\ \text{a parabola} \qquad
\textbf{(C)}\ \text{an ellipse} \qquad
\textbf{(D)}\ \text{a straight line} \qquad
\textbf{(E)}\ \text{a curve here not listed}$