This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 451

2004 Gheorghe Vranceanu, 2

Solve in $ \mathbb{R}^2 $ the following equation. $$ 9^{\sqrt x} +9^{\sqrt{y}} +9^{1/\sqrt{xy}} =\frac{81}{\sqrt{x} +\sqrt{y} +1/\sqrt{xy}} $$ [i]O. Trofin[/i]

1968 IMO, 6

Let $n$ be a natural number. Prove that \[ \left\lfloor \frac{n+2^0}{2^1} \right\rfloor + \left\lfloor \frac{n+2^1}{2^2} \right\rfloor +\cdots +\left\lfloor \frac{n+2^{n-1}}{2^n}\right\rfloor =n. \] [hide="Remark"]For any real number $x$, the number $\lfloor x \rfloor$ represents the largest integer smaller or equal with $x$.[/hide]

2017 China Team Selection Test, 1

Prove that :$$\sum_{k=0}^{58}C_{2017+k}^{58-k}C_{2075-k}^{k}=\sum_{p=0}^{29}C_{4091-2p}^{58-2p}$$

2000 Tournament Of Towns, 4

Tags: equation , even , algebra
Let $a_1 , a_2 , ..., a_n$ be non-zero integers that satisfy the equation $$a_1 +\dfrac{1}{a_2+\dfrac{1}{a_3+ ... \dfrac{1}{a_n+\dfrac{1}{x}} } } = x$$ for all values of $x$ for which the lefthand side of the equation makes sense. (a) Prove that $n$ is even. (b) What is the smallest n for which such numbers $a_1 , a_2 , ..., a_n$ exist? (M Skopenko)

2017 Romania National Olympiad, 1

Solve in the set of real numbers the equation $ a^{[ x ]} +\log_a\{ x \} =x , $ where $ a $ is a real number from the interval $ (0,1). $ $ [] $ and $ \{\} $ [i]denote the floor, respectively, the fractional part.[/i]

2023 Myanmar IMO Training, 4

Let $n$ be a positive integer and let $p$ be a prime number. Prove that if $a$, $b$, $c$ are integers (not necessarily positive) satisfying the equations \[ a^n + pb = b^n + pc = c^n + pa\] then $a = b = c$. [i]Proposed by Angelo Di Pasquale, Australia[/i]

1998 Tuymaada Olympiad, 2

Solve the equation $(x^3-1000)^{1/2}=(x^2+100)^{1/3}$

1966 IMO Longlists, 40

For a positive real number $p$, find all real solutions to the equation \[\sqrt{x^2 + 2px - p^2} -\sqrt{x^2 - 2px - p^2} =1.\]

1971 Bulgaria National Olympiad, Problem 2

Tags: equation , algebra
Prove that the equation $$\sqrt{2-x^2}+\sqrt[3]{3-x^3}=0$$ has no real solutions.

1985 Traian Lălescu, 1.1

Solve the equation $ \frac{\sqrt{2+x} +\sqrt{2-x}}{\sqrt{2+x} -\sqrt{2-x}} =\sqrt 3. $

1989 IMO Longlists, 22

$ \forall n > 0, n \in \mathbb{Z},$ there exists uniquely determined integers $ a_n, b_n, c_n \in \mathbb{Z}$ such \[ \left(1 \plus{} 4 \cdot \sqrt[3]{2} \minus{} 4 \cdot \sqrt[3]{4} \right)^n \equal{} a_n \plus{} b_n \cdot \sqrt[3]{2} \plus{} c_n \cdot \sqrt[3]{4}.\] Prove that $ c_n \equal{} 0$ implies $ n \equal{} 0.$

1974 IMO Longlists, 8

Let $x, y, z$ be real numbers each of whose absolute value is different from $\frac{1}{\sqrt 3}$ such that $x + y + z = xyz$. Prove that \[\frac{3x - x^3}{1-3x^2} + \frac{3y - y^3}{1-3y^2} + \frac{3z -z^3}{1-3z^2} = \frac{3x - x^3}{1-3x^2} \cdot \frac{3y - y^3}{1-3y^2} \cdot \frac{3z - z^3}{1-3z^2}\]

1984 IMO Longlists, 32

Angles of a given triangle $ABC$ are all smaller than $120^\circ$. Equilateral triangles $AFB, BDC$ and $CEA$ are constructed in the exterior of $ABC$. (a) Prove that the lines $AD, BE$, and $CF$ pass through one point $S.$ (b) Prove that $SD + SE + SF = 2(SA + SB + SC).$

1966 IMO Longlists, 31

Solve the equation $|x^2 -1|+ |x^2 - 4| = mx$ as a function of the parameter $m$. Which pairs $(x,m)$ of integers satisfy this equation?

2007 Mathematics for Its Sake, 2

For a given natural number $ n\ge 2, $ find all $ \text{n-tuples} $ of nonnegative real numbers which have the property that each one of the numbers forming the $ \text{n-tuple} $ is the square of the sum of the other $ n-1 $ ones. [i]Mugur Acu[/i]

1997 Akdeniz University MO, 3

$(x_n)$ be a sequence with $x_1=0$, $$x_{n+1}=5x_n + \sqrt{24x_n^2+1}$$. Prove that for $k \geq 2$ $x_k$ is a natural number.

1982 IMO Shortlist, 16

Prove that if $n$ is a positive integer such that the equation \[ x^3-3xy^2+y^3=n \] has a solution in integers $x,y$, then it has at least three such solutions. Show that the equation has no solutions in integers for $n=2891$.

2018 VJIMC, 1

Find all real solutions of the equation \[17^x+2^x=11^x+2^{3x}.\]

2016 Dutch BxMO TST, 1

For a positive integer $n$ that is not a power of two, we de fine $t(n)$ as the greatest odd divisor of $n$ and $r(n)$ as the smallest positive odd divisor of $n$ unequal to $1$. Determine all positive integers $n$ that are not a power of two and for which we have $n = 3t(n) + 5r(n)$.

2013 IFYM, Sozopol, 7

Tags: equation , algebra
Let $a,b,c,$ and $d$ be real numbers and $k\geq l\geq m$ and $p\geq q\geq r$. Prove that $f(x)=a(x+1)^k (x+2)^p+b(x+1)^l (x+2)^q+c(x+1)^m (x+2)^r-d=0$ has no more than 14 positive roots.

2021-IMOC, A1

Tags: algebra , equation
Find all real numbers x that satisfies$$\sqrt{\sqrt{x-\frac{1}{x}}+\sqrt{1-\frac{1}{x}}-\frac{1}{\sqrt{x-\frac{1}{x}}+\sqrt{1-\frac{1}{x}}}}+\sqrt{1-\frac{1}{\sqrt{x-\frac{1}{x}}+\sqrt{1-\frac{1}{x}}}}=x.$$ [url=https://artofproblemsolving.com/community/c6h2645263p22889979]2021 IMOC Problems[/url]

2002 China Girls Math Olympiad, 6

Find all pairs of positive integers $ (x,y)$ such that \[ x^y \equal{} y^{x \minus{} y}. \] [i]Albania[/i]

1967 IMO Shortlist, 1

Determine all positive roots of the equation $ x^x = \frac{1}{\sqrt{2}}.$

1976 Euclid, 10

Tags: function , equation
Source: 1976 Euclid Part A Problem 10 ----- If $f$, $g$, $h$, and $k$ are functions and $a$ and $b$ are numbers such that $f(x)=(x-1)g(x)+3=(x+1)h(x)+1=(x^2-1)k(x)+ax+b$ for all $x$, then $(a,b)$ equals $\textbf{(A) } (-2,1) \qquad \textbf{(B) } (-1,2) \qquad \textbf{(C) } (1,1) \qquad \textbf{(D) } (1,2) \qquad \textbf{(E) } (2,1)$

2016 Kosovo National Mathematical Olympiad, 4

Tags: equation
Solve equation in real numbers $\log_{2}(4^x+4)=x+\log_{2}(2^{x+1}-3)$