This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 181

1990 IMO Longlists, 8

Let $ n \geq 3$ and consider a set $ E$ of $ 2n \minus{} 1$ distinct points on a circle. Suppose that exactly $ k$ of these points are to be colored black. Such a coloring is [b]good[/b] if there is at least one pair of black points such that the interior of one of the arcs between them contains exactly $ n$ points from $ E$. Find the smallest value of $ k$ so that every such coloring of $ k$ points of $ E$ is good.

1990 IMO Longlists, 9

Assume that the set of all positive integers is decomposed into $ r$ (disjoint) subsets $ A_1 \cup A_2 \cup \ldots \cup A_r \equal{} \mathbb{N}.$ Prove that one of them, say $ A_i,$ has the following property: There exists a positive $ m$ such that for any $ k$ one can find numbers $ a_1, a_2, \ldots, a_k$ in $ A_i$ with $ 0 < a_{j \plus{} 1} \minus{} a_j \leq m,$ $ (1 \leq j \leq k \minus{} 1)$.

2001 Czech-Polish-Slovak Match, 3

Let $ n$ and $ k$ be positive integers such that $ \frac{1}{2} n < k \leq \frac{2}{3} n.$ Find the least number $ m$ for which it is possible to place $ m$ pawns on $ m$ squares of an $ n \times n$ chessboard so that no column or row contains a block of $ k$ adjacent unoccupied squares.

1983 IMO, 1

Let $ABC$ be an equilateral triangle and $\mathcal{E}$ the set of all points contained in the three segments $AB$, $BC$, and $CA$ (including $A$, $B$, and $C$). Determine whether, for every partition of $\mathcal{E}$ into two disjoint subsets, at least one of the two subsets contains the vertices of a right-angled triangle.

2013 Taiwan TST Round 1, 4

Let $n \geq 1$ be an integer. What is the maximum number of disjoint pairs of elements of the set $\{ 1,2,\ldots , n \}$ such that the sums of the different pairs are different integers not exceeding $n$?

1997 IMO Shortlist, 3

For each finite set $ U$ of nonzero vectors in the plane we define $ l(U)$ to be the length of the vector that is the sum of all vectors in $ U.$ Given a finite set $ V$ of nonzero vectors in the plane, a subset $ B$ of $ V$ is said to be maximal if $ l(B)$ is greater than or equal to $ l(A)$ for each nonempty subset $ A$ of $ V.$ (a) Construct sets of 4 and 5 vectors that have 8 and 10 maximal subsets respectively. (b) Show that, for any set $ V$ consisting of $ n \geq 1$ vectors the number of maximal subsets is less than or equal to $ 2n.$

2018 Morocco TST., 5

Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.

1990 IMO Shortlist, 4

Assume that the set of all positive integers is decomposed into $ r$ (disjoint) subsets $ A_1 \cup A_2 \cup \ldots \cup A_r \equal{} \mathbb{N}.$ Prove that one of them, say $ A_i,$ has the following property: There exists a positive $ m$ such that for any $ k$ one can find numbers $ a_1, a_2, \ldots, a_k$ in $ A_i$ with $ 0 < a_{j \plus{} 1} \minus{} a_j \leq m,$ $ (1 \leq j \leq k \minus{} 1)$.

2006 IMO, 2

Let $P$ be a regular $2006$-gon. A diagonal is called [i]good[/i] if its endpoints divide the boundary of $P$ into two parts, each composed of an odd number of sides of $P$. The sides of $P$ are also called [i]good[/i]. Suppose $P$ has been dissected into triangles by $2003$ diagonals, no two of which have a common point in the interior of $P$. Find the maximum number of isosceles triangles having two good sides that could appear in such a configuration.

Russian TST 2018, P1

Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.

2008 Germany Team Selection Test, 3

Given is a convex polygon $ P$ with $ n$ vertices. Triangle whose vertices lie on vertices of $ P$ is called [i]good [/i] if all its sides are unit length. Prove that there are at most $ \frac {2n}{3}$ [i]good[/i] triangles. [i]Author: Vyacheslav Yasinskiy, Ukraine[/i]

2010 Germany Team Selection Test, 1

For any integer $n\geq 2$, let $N(n)$ be the maxima number of triples $(a_i, b_i, c_i)$, $i=1, \ldots, N(n)$, consisting of nonnegative integers $a_i$, $b_i$ and $c_i$ such that the following two conditions are satisfied: [list][*] $a_i+b_i+c_i=n$ for all $i=1, \ldots, N(n)$, [*] If $i\neq j$ then $a_i\neq a_j$, $b_i\neq b_j$ and $c_i\neq c_j$[/list] Determine $N(n)$ for all $n\geq 2$. [i]Proposed by Dan Schwarz, Romania[/i]

1979 IMO Longlists, 31

Let $R$ be a set of exactly $6$ elements. A set $F$ of subsets of $R$ is called an $S$-family over $R$ if and only if it satisfies the following three conditions: (i) For no two sets $X, Y$ in $F$ is $X \subseteq Y$ ; (ii) For any three sets $X, Y,Z$ in $F$, $X \cup Y \cup Z \neq R,$ (iii) $\bigcup_{X \in F} X = R$

1989 IMO Shortlist, 29

155 birds $ P_1, \ldots, P_{155}$ are sitting down on the boundary of a circle $ C.$ Two birds $ P_i, P_j$ are mutually visible if the angle at centre $ m(\cdot)$ of their positions $ m(P_iP_j) \leq 10^{\circ}.$ Find the smallest number of mutually visible pairs of birds, i.e. minimal set of pairs $ \{x,y\}$ of mutually visible pairs of birds with $ x,y \in \{P_1, \ldots, P_{155}\}.$ One assumes that a position (point) on $ C$ can be occupied simultaneously by several birds, e.g. all possible birds.

2006 Germany Team Selection Test, 1

Let $n\geq 3$ be a fixed integer. Each side and each diagonal of a regular $n$-gon is labelled with a number from the set $\left\{1;\;2;\;...;\;r\right\}$ in a way such that the following two conditions are fulfilled: [b]1.[/b] Each number from the set $\left\{1;\;2;\;...;\;r\right\}$ occurs at least once as a label. [b]2.[/b] In each triangle formed by three vertices of the $n$-gon, two of the sides are labelled with the same number, and this number is greater than the label of the third side. [b](a)[/b] Find the maximal $r$ for which such a labelling is possible. [b](b)[/b] [i]Harder version (IMO Shortlist 2005):[/i] For this maximal value of $r$, how many such labellings are there? [hide="Easier version (5th German TST 2006) - contains answer to the harder version"] [i]Easier version (5th German TST 2006):[/i] Show that, for this maximal value of $r$, there are exactly $\frac{n!\left(n-1\right)!}{2^{n-1}}$ possible labellings.[/hide] [i]Proposed by Federico Ardila, Colombia[/i]

1999 IMO Shortlist, 2

The numbers from 1 to $n^2$ are randomly arranged in the cells of a $n \times n$ square ($n \geq 2$). For any pair of numbers situated on the same row or on the same column the ratio of the greater number to the smaller number is calculated. Let us call the [b]characteristic[/b] of the arrangement the smallest of these $n^2\left(n-1\right)$ fractions. What is the highest possible value of the characteristic ?

1967 IMO Shortlist, 4

A subset $S$ of the set of integers 0 - 99 is said to have property $A$ if it is impossible to fill a crossword-puzzle with 2 rows and 2 columns with numbers in $S$ (0 is written as 00, 1 as 01, and so on). Determine the maximal number of elements in the set $S$ with the property $A.$

2006 China Team Selection Test, 2

Given positive integer $n$, find the biggest real number $C$ which satisfy the condition that if the sum of the reciprocals of a set of integers (They can be the same.) that are greater than $1$ is less than $C$, then we can divide the set of numbers into no more than $n$ groups so that the sum of reciprocals of every group is less than $1$.

2008 Germany Team Selection Test, 3

Given is a convex polygon $ P$ with $ n$ vertices. Triangle whose vertices lie on vertices of $ P$ is called [i]good [/i] if all its sides are unit length. Prove that there are at most $ \frac {2n}{3}$ [i]good[/i] triangles. [i]Author: Vyacheslav Yasinskiy, Ukraine[/i]

2003 IMO Shortlist, 3

Let $n \geq 5$ be a given integer. Determine the greatest integer $k$ for which there exists a polygon with $n$ vertices (convex or not, with non-selfintersecting boundary) having $k$ internal right angles. [i]Proposed by Juozas Juvencijus Macys, Lithuania[/i]

1977 IMO Longlists, 57

In a finite sequence of real numbers the sum of any seven successive terms is negative and the sum of any eleven successive terms is positive. Determine the maximum number of terms in the sequence.

1987 IMO Longlists, 53

Prove that there exists a four-coloring of the set $M = \{1, 2, \cdots, 1987\}$ such that any arithmetic progression with $10$ terms in the set $M$ is not monochromatic. [b][i]Alternative formulation[/i][/b] Let $M = \{1, 2, \cdots, 1987\}$. Prove that there is a function $f : M \to \{1, 2, 3, 4\}$ that is not constant on every set of $10$ terms from $M$ that form an arithmetic progression. [i]Proposed by Romania[/i]

2006 ISI B.Math Entrance Exam, 1

Bishops on a chessboard move along the diagonals ( that is , on lines parallel to the two main diagonals ) . Prove that the maximum number of non-attacking bishops on an $n*n$ chessboard is $2n-2$. (Two bishops are said to be attacking if they are on a common diagonal).

2009 Germany Team Selection Test, 1

In the plane we consider rectangles whose sides are parallel to the coordinate axes and have positive length. Such a rectangle will be called a [i]box[/i]. Two boxes [i]intersect[/i] if they have a common point in their interior or on their boundary. Find the largest $ n$ for which there exist $ n$ boxes $ B_1$, $ \ldots$, $ B_n$ such that $ B_i$ and $ B_j$ intersect if and only if $ i\not\equiv j\pm 1\pmod n$. [i]Proposed by Gerhard Woeginger, Netherlands[/i]

1988 IMO Shortlist, 14

For what values of $ n$ does there exist an $ n \times n$ array of entries -1, 0 or 1 such that the $ 2 \cdot n$ sums obtained by summing the elements of the rows and the columns are all different?