This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 310

2022 Irish Math Olympiad, 1

1. For [i]n[/i] a positive integer, [i]n[/i]! = 1 $\cdot$ 2 $\cdot$ 3 $\dots$ ([i]n[/i] - 1) $\cdot$ [i]n[/i] is the product of the positive integers from 1 to [i]n[/i]. Determine, with proof, all positive integers [i]n[/i] for which [i]n[/i]! + 3 is a power of 3.

1969 IMO Longlists, 15

$(CZS 4)$ Let $K_1,\cdots , K_n$ be nonnegative integers. Prove that $K_1!K_2!\cdots K_n! \ge \left[\frac{K}{n}\right]!^n$, where $K = K_1 + \cdots + K_n$

2012 Today's Calculation Of Integral, 803

Answer the following questions: (1) Evaluate $\int_{-1}^1 (1-x^2)e^{-2x}dx.$ (2) Find $\lim_{n\to\infty} \left\{\frac{(2n)!}{n!n^n}\right\}^{\frac{1}{n}}.$

2019 LIMIT Category B, Problem 2

The digit in unit place of $1!+2!+\ldots+99!$ is $\textbf{(A)}~3$ $\textbf{(B)}~0$ $\textbf{(C)}~1$ $\textbf{(D)}~7$

2020 Tournament Of Towns, 2

Three legendary knights are fighting against a multiheaded dragon. Whenever the first knight attacks, he cuts off half of the current number of heads plus one more. Whenever the second knight attacks, he cuts off one third of the current number of heads plus two more. Whenever the third knight attacks, he cuts off one fourth of the current number of heads plus three more. They repeatedly attack in an arbitrary order so that at each step an integer number of heads is being cut off. If all the knights cannot attack as the number of heads would become non-integer, the dragon eats them. Will the knights be able to cut off all the dragon’s heads if it has $41!$ heads? Alexey Zaslavsky

PEN F Problems, 13

Prove that numbers of the form \[\frac{a_{1}}{1!}+\frac{a_{2}}{2!}+\frac{a_{3}}{3!}+\cdots,\] where $0 \le a_{i}\le i-1 \;(i=2, 3, 4, \cdots)$ are rational if and only if starting from some $i$ on all the $a_{i}$'s are either equal to $0$ ( in which case the sum is finite) or all are equal to $i-1$.

2023 Bangladesh Mathematical Olympiad, P1

Find all possible non-negative integer solution $(x,y)$ of the following equation- $$x! + 2^y =(x+1)!$$ Note: $x!=x \cdot (x-1)!$ and $0!=1$. For example, $5! = 5\times 4\times 3\times 2\times 1 = 120$.

2006 Germany Team Selection Test, 2

Find all positive integers $ n$ such that there exists a unique integer $ a$ such that $ 0\leq a < n!$ with the following property: \[ n!\mid a^n \plus{} 1 \] [i]Proposed by Carlos Caicedo, Colombia[/i]

2019 Portugal MO, 3

The product $1\times 2\times 3\times ...\times n$ is written on the board. For what integers $n \ge 2$, we can add exclamation marks to some factors to convert them into factorials, in such a way that the final product can be a perfect square?

2011 Saudi Arabia BMO TST, 1

Let $n$ be a positive integer. Find all real numbers $x_1,x_2 ,..., x_n$ such that $$\prod_{k=1}^{n}(x_k^2+ (k + 2)x_k + k^2 + k + 1) =\left(\frac{3}{4}\right)^n (n!)^2$$

2011 Math Prize for Girls Olympiad, 4

Let $M$ be a matrix with $r$ rows and $c$ columns. Each entry of $M$ is a nonnegative integer. Let $a$ be the average of all $rc$ entries of $M$. If $r > {(10 a + 10)}^c$, prove that $M$ has two identical rows.

2023-IMOC, N2

Find all pairs of positive integers $(a, b)$ such that $a^b+b^a=a!+b^2+ab+1$.

2023 Greece JBMO TST, 4

Determine all pairs $(k, n)$ of positive integers that satisfy $$1! + 2! + ... + k! = 1 + 2 + ... + n.$$

2003 Austrian-Polish Competition, 7

Put $f(n) = \frac{n^n - 1}{n - 1}$. Show that $n!^{f(n)}$ divides $(n^n)! $. Find as many positive integers as possible for which $n!^{f(n)+1}$ does not divide $(n^n)!$ .

1983 Canada National Olympiad, 1

Find all positive integers $w$, $x$, $y$ and $z$ which satisfy $w! = x! + y! + z!$.

2015 CCA Math Bonanza, I2

Tags: factorial
The operation $*$ is defined by the following: $a*b=a!-ab-b.$ Compute the value of $5*8.$ [i]2015 CCA Math Bonanza Individual Round #2[/i]

1966 IMO Longlists, 11

Does there exist an integer $z$ that can be written in two different ways as $z = x! + y!$, where $x, y$ are natural numbers with $x \le y$ ?

1961 AMC 12/AHSME, 35

Tags: factorial
The number $695$ is to be written with a factorial base of numeration, that is, $695=a_1+a_2\times2!+a_3\times3!+ . . . a_n \times n!$ where $a_1, a_2, a_3 ... a_n$ are integers such that $0 \le a_k \le k$, and $n!$ means $n(n-1)(n-2)...2 \times 1$. Find $a_4$ ${{ \textbf{(A)}\ 0\qquad\textbf{(B)}\ 1\qquad\textbf{(C)}\ 2\qquad\textbf{(D)}\ 3}\qquad\textbf{(E)}\ 4} $

2006 Stanford Mathematics Tournament, 14

Find the smallest nonnegative integer $n$ for which $\binom{2006}{n}$ is divisible by $7^3$.

1999 Poland - Second Round, 6

Suppose that $a_1,a_2,...,a_n$ are integers such that $a_1 +2^ia_2 +3^ia_3 +...+n^ia_n = 0$ for $i = 1,2,...,k -1$, where $k \ge 2$ is a given integer. Prove that $a_1+2^ka_2+3^ka_3+...+n^ka_n$ is divisible by $k!$.

1969 IMO Shortlist, 64

$(USS 1)$ Prove that for a natural number $n > 2, (n!)! > n[(n - 1)!]^{n!}.$

1957 Moscow Mathematical Olympiad, 369

Represent $1957$ as the sum of $12$ positive integer summands $a_1, a_2, ... , a_{12}$ for which the number $a_1! \cdot a_2! \cdot a_3! \cdot ... \cdot a_{12}!$ is minimal.

2014 Online Math Open Problems, 25

If \[ \sum_{n=1}^{\infty}\frac{\frac11 + \frac12 + \dots + \frac 1n}{\binom{n+100}{100}} = \frac pq \] for relatively prime positive integers $p,q$, find $p+q$. [i]Proposed by Michael Kural[/i]

2011 VTRMC, Problem 3

Find $\sum_{k=1}^\infty\frac{k^2-2}{(k+2)!}$.

1997 AIME Problems, 10

Every card in a deck has a picture of one shape - circle, square, or triangle, which is painted in one of the three colors - red, blue, or green. Furthermore, each color is applied in one of three shades - light, medium, or dark. The deck has 27 cards, with every shape-color-shade combination represented. A set of three cards from the deck is called complementary if all of the following statements are true: i. Either each of the three cards has a different shape or all three of the card have the same shape. ii. Either each of the three cards has a different color or all three of the cards have the same color. iii. Either each of the three cards has a different shade or all three of the cards have the same shade. How many different complementary three-card sets are there?