Found problems: 1187
2012 AMC 12/AHSME, 24
Define the function $f_1$ on the positive integers by setting $f_1(1)=1$ and if $n=p_1^{e_1}p_2^{e_2}...p_k^{e_k}$ is the prime factorization of $n>1$, then \[f_1(n)=(p_1+1)^{e_1-1}(p_2+1)^{e_2-1}\cdots (p_k+1)^{e_k-1}.\] For every $m \ge 2$, let $f_m(n)=f_1(f_{m-1}(n))$. For how many $N$ in the range $1 \le N \le 400$ is the sequence $(f_1(N), f_2(N), f_3(N),...)$ unbounded?
[b]Note:[/b] a sequence of positive numbers is unbounded if for every integer $B$, there is a member of the sequence greater than $B$.
$ \textbf{(A)}\ 15 \qquad\textbf{(B)}\ 16 \qquad\textbf{(C)}\ 17 \qquad\textbf{(D)}\ 18\qquad\textbf{(E)}\ 19 $
2013 China National Olympiad, 1
Let $n \geqslant 2$ be an integer. There are $n$ finite sets ${A_1},{A_2},\ldots,{A_n}$ which satisfy the condition
\[\left| {{A_i}\Delta {A_j}} \right| = \left| {i - j} \right| \quad \forall i,j \in \left\{ {1,2,...,n} \right\}.\]
Find the minimum of $\sum\limits_{i = 1}^n {\left| {{A_i}} \right|} $.
2011 Indonesia TST, 2
A graph $G$ with $n$ vertex is called [i]good [/i] if every vertex could be labelled with distinct positive integers which are less than or equal $\lfloor \frac{n^2}{4} \rfloor$ such that there exists a set of nonnegative integers $D$ with the following property: there exists an edge between $2$ vertices if and only if the difference of their labels is in $D$.
Show that there exists a positive integer $N$ such that for every $n \ge N$, there exist a not-good graph with $n$ vertices.
2023 USA IMO Team Selection Test, 4
Let $\lfloor \bullet \rfloor$ denote the floor function. For nonnegative integers $a$ and $b$, their [i]bitwise xor[/i], denoted $a \oplus b$, is the unique nonnegative integer such that $$ \left \lfloor \frac{a}{2^k} \right \rfloor+ \left\lfloor\frac{b}{2^k} \right\rfloor - \left\lfloor \frac{a\oplus b}{2^k}\right\rfloor$$ is even for every $k \ge 0$. Find all positive integers $a$ such that for any integers $x>y\ge 0$, we have \[ x\oplus ax \neq y \oplus ay. \]
[i]Carl Schildkraut[/i]
PEN J Problems, 11
Prove that ${d((n^2 +1)}^2)$ does not become monotonic from any given point onwards.
PEN N Problems, 11
The infinite sequence of 2's and 3's \[\begin{array}{l}2,3,3,2,3,3,3,2,3,3,3,2,3,3,2,3,3, \\ 3,2,3,3,3,2,3,3,3,2,3,3,2,3,3,3,2,\cdots \end{array}\] has the property that, if one forms a second sequence that records the number of 3's between successive 2's, the result is identical to the given sequence. Show that there exists a real number $r$ such that, for any $n$, the $n$th term of the sequence is 2 if and only if $n = 1+\lfloor rm \rfloor$ for some nonnegative integer $m$.
PEN S Problems, 37
Let $n$ and $k$ are integers with $n>0$. Prove that \[-\frac{1}{2n}\sum^{n-1}_{m=1}\cot \frac{\pi m}{n}\sin \frac{2\pi km}{n}= \begin{cases}\tfrac{k}{n}-\lfloor\tfrac{k}{n}\rfloor-\frac12 & \text{if }k|n \\ 0 & \text{otherwise}\end{cases}.\]
2007 Harvard-MIT Mathematics Tournament, 36
[i]The Marathon.[/i] Let $\omega$ denote the incircle of triangle $ABC$. The segments $BC$, $CA$, and $AB$ are tangent to $\omega$ at $D$, $E$ and $F$, respectively. Point $P$ lies on $EF$ such that segment $PD$ is perpendicular to $BC$. The line $AP$ intersects $BC$ at $Q$. The circles $\omega_1$ and $\omega_2$ pass through $B$ and $C$, respectively, and are tangent to $AQ$ at $Q$; the former meets $AB$ again at $X$, and the latter meets $AC$ again at $Y$. The line $XY$ intersects $BC$ at $Z$. Given that $AB=15$, $BC=14$, and $CA=13$, find $\lfloor XZ\cdot YZ\rfloor$.
2020 USA TSTST, 4
Find all pairs of positive integers $(a,b)$ satisfying the following conditions:
[list]
[*] $a$ divides $b^4+1$,
[*] $b$ divides $a^4+1$,
[*] $\lfloor\sqrt{a}\rfloor=\lfloor \sqrt{b}\rfloor$.
[/list]
[i]Yang Liu[/i]
2021 Balkan MO Shortlist, N5
A natural number $n$ is given. Determine all $(n - 1)$-tuples of nonnegative integers $a_1, a_2, ..., a_{n - 1}$ such that
$$\lfloor \frac{m}{2^n - 1}\rfloor + \lfloor \frac{2m + a_1}{2^n - 1}\rfloor + \lfloor \frac{2^2m + a_2}{2^n - 1}\rfloor + \lfloor \frac{2^3m + a_3}{2^n - 1}\rfloor + ... + \lfloor \frac{2^{n - 1}m + a_{n - 1}}{2^n - 1}\rfloor = m$$
holds for all $m \in \mathbb{Z}$.
2007 Putnam, 5
Let $ k$ be a positive integer. Prove that there exist polynomials $ P_0(n),P_1(n),\dots,P_{k\minus{}1}(n)$ (which may depend on $ k$) such that for any integer $ n,$
\[ \left\lfloor\frac{n}{k}\right\rfloor^k\equal{}P_0(n)\plus{}P_1(n)\left\lfloor\frac{n}{k}\right\rfloor\plus{} \cdots\plus{}P_{k\minus{}1}(n)\left\lfloor\frac{n}{k}\right\rfloor^{k\minus{}1}.\]
($ \lfloor a\rfloor$ means the largest integer $ \le a.$)
2007 AIME Problems, 5
The graph of the equation $9x+223y=2007$ is drawn on graph paper with each square representing one unit in each direction. How many of the $1$ by $1$ graph paper squares have interiors lying entirely below the graph and entirely in the first quadrant?
1991 IMO Shortlist, 20
Let $ \alpha$ be the positive root of the equation $ x^{2} \equal{} 1991x \plus{} 1$. For natural numbers $ m$ and $ n$ define
\[ m*n \equal{} mn \plus{} \lfloor\alpha m \rfloor \lfloor \alpha n\rfloor.
\]
Prove that for all natural numbers $ p$, $ q$, and $ r$,
\[ (p*q)*r \equal{} p*(q*r).
\]
2022 Saudi Arabia IMO TST, 1
Which positive integers $n$ make the equation \[\sum_{i=1}^n \sum_{j=1}^n \left\lfloor \frac{ij}{n+1} \right\rfloor=\frac{n^2(n-1)}{4}\] true?
II Soros Olympiad 1995 - 96 (Russia), 10.4
Solve the system of equations
$$\begin{cases} x^2+ [y]=10
\\ y^2+[x]=13
\end{cases}$$
($[x]$ is the integer part of $x$, $[x]$ is equal to the largest integer not exceeding $x$. For example, $[3,33] = 3$, $[2] = 2$, $[- 3.01] = -4$).
1985 IMO Longlists, 65
Define the functions $f, F : \mathbb N \to \mathbb N$, by
\[f(n)=\left[ \frac{3-\sqrt 5}{2} n \right] , F(k) =\min \{n \in \mathbb N|f^k(n) > 0 \},\]
where $f^k = f \circ \cdots \circ f$ is $f$ iterated $n$ times. Prove that $F(k + 2) = 3F(k + 1) - F(k)$ for all $k \in \mathbb N.$
2006 Iran MO (3rd Round), 1
Let $A$ be a family of subsets of $\{1,2,\ldots,n\}$ such that no member of $A$ is contained in another. Sperner’s Theorem states that $|A|\leq{n\choose{\lfloor\frac{n}{2}\rfloor}}$. Find all the families for which the equality holds.
2011 Today's Calculation Of Integral, 746
Prove the following inequality.
\[n^ne^{-n+1}\leq n!\leq \frac 14(n+1)^{n+1}e^{-n+1}.\]
1992 IMO Shortlist, 18
Let $ \lfloor x \rfloor$ denote the greatest integer less than or equal to $ x.$ Pick any $ x_1$ in $ [0, 1)$ and define the sequence $ x_1, x_2, x_3, \ldots$ by $ x_{n\plus{}1} \equal{} 0$ if $ x_n \equal{} 0$ and $ x_{n\plus{}1} \equal{} \frac{1}{x_n} \minus{} \left \lfloor \frac{1}{x_n} \right \rfloor$ otherwise. Prove that
\[ x_1 \plus{} x_2 \plus{} \ldots \plus{} x_n < \frac{F_1}{F_2} \plus{} \frac{F_2}{F_3} \plus{} \ldots \plus{} \frac{F_n}{F_{n\plus{}1}},\]
where $ F_1 \equal{} F_2 \equal{} 1$ and $ F_{n\plus{}2} \equal{} F_{n\plus{}1} \plus{} F_n$ for $ n \geq 1.$
2012 Princeton University Math Competition, B5
Considering all numbers of the form $n = \lfloor \frac{k^3}{2012} \rfloor$, where $\lfloor x \rfloor$ denotes the greatest integer less than or equal to $x$, and $k$ ranges from $1$ to $2012$, how many of these $n$’s are distinct?
2004 China Team Selection Test, 2
Let u be a fixed positive integer. Prove that the equation $n! = u^{\alpha} - u^{\beta}$ has a finite number of solutions $(n, \alpha, \beta).$
2017 India PRMO, 14
Suppose $x$ is a positive real number such that $\{x\}, [x]$ and $x$ are in a geometric progression. Find the least positive integer $n$ such that $x^n > 100$. (Here $[x]$ denotes the integer part of $x$ and $\{x\} = x - [x]$.)
2022 JBMO TST - Turkey, 2
For a real number $a$, $[a]$ denotes the largest integer not exceeding $a$.
Find all positive real numbers $x$ satisfying the equation
$$x\cdot [x]+2022=[x^2]$$
2002 National Olympiad First Round, 24
How many positive integers $n$ are there such that the equation $\left \lfloor \sqrt[3] {7n + 2} \right \rfloor = \left \lfloor \sqrt[3] {7n + 3} \right \rfloor $ does not hold?
$
\textbf{a)}\ 0
\qquad\textbf{b)}\ 1
\qquad\textbf{c)}\ 7
\qquad\textbf{d)}\ \text{Infinitely many}
\qquad\textbf{e)}\ \text{None of above}
$
2015 India IMO Training Camp, 3
Let $n > 1$ be a given integer. Prove that infinitely many terms of the sequence $(a_k )_{k\ge 1}$, defined by \[a_k=\left\lfloor\frac{n^k}{k}\right\rfloor,\] are odd. (For a real number $x$, $\lfloor x\rfloor$ denotes the largest integer not exceeding $x$.)
[i]Proposed by Hong Kong[/i]