This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1187

2008 ITest, 86

Let $a$, $b$, $c$, and $d$ be positive real numbers such that \[\begin{array}{c@{\hspace{3pt}} c@{\hspace{3pt}} c@{\hspace{3pt}} c@{\hspace{3pt}}c}a^2+b^2&=&c^2+d^2&=&2008,\\ ac&=&bd&=&1000.\end{array}\]If $S=a+b+c+d$, compute the value of $\lfloor S\rfloor$.

2016 Taiwan TST Round 1, 1

Determine all positive integers $M$ such that the sequence $a_0, a_1, a_2, \cdots$ defined by \[ a_0 = M + \frac{1}{2} \qquad \textrm{and} \qquad a_{k+1} = a_k\lfloor a_k \rfloor \quad \textrm{for} \, k = 0, 1, 2, \cdots \] contains at least one integer term.

2016 Moldova Team Selection Test, 2

Let $p$ be a prime number of the form $4k+1$. Show that \[\sum^{p-1}_{i=1}\left( \left \lfloor \frac{2i^{2}}{p}\right \rfloor-2\left \lfloor \frac{i^{2}}{p}\right \rfloor \right) = \frac{p-1}{2}.\]

2009 Princeton University Math Competition, 7

Lines $l$ and $m$ are perpendicular. Line $l$ partitions a convex polygon into two parts of equal area, and partitions the projection of the polygon onto $m$ into two line segments of length $a$ and $b$ respectively. Determine the maximum value of $\left\lfloor \frac{1000a}{b} \right\rfloor$. (The floor notation $\lfloor x \rfloor$ denotes largest integer not exceeding $x$)

2010 India IMO Training Camp, 3

For any integer $n\ge 2$, let $N(n)$ be the maximum number of triples $(a_j,b_j,c_j),j=1,2,3,\cdots ,N(n),$ consisting of non-negative integers $a_j,b_j,c_j$ (not necessarily distinct) such that the following two conditions are satisfied: (a) $a_j+b_j+c_j=n,$ for all $j=1,2,3,\cdots N(n)$; (b) $j\neq k$, then $a_j\neq a_k$, $b_j\neq b_k$ and $c_j\neq c_k$. Determine $N(n)$ for all $n\ge 2$.

1989 IMO Longlists, 49

Let $ t(n)$ for $ n \equal{} 3, 4, 5, \ldots,$ represent the number of distinct, incongruent, integer-sided triangles whose perimeter is $ n;$ e.g., $ t(3) \equal{} 1.$ Prove that \[ t(2n\minus{}1) \minus{} t(2n) \equal{} \left[ \frac{6}{n} \right] \text{ or } \left[ \frac{6}{n} \plus{} 1 \right].\]

2003 Vietnam Team Selection Test, 3

Let $f(0, 0) = 5^{2003}, f(0, n) = 0$ for every integer $n \neq 0$ and \[\begin{array}{c}\ f(m, n) = f(m-1, n) - 2 \cdot \Bigg\lfloor \frac{f(m-1, n)}{2}\Bigg\rfloor + \Bigg\lfloor\frac{f(m-1, n-1)}{2}\Bigg\rfloor + \Bigg\lfloor\frac{f(m-1, n+1)}{2}\Bigg\rfloor \end{array}\] for every natural number $m > 0$ and for every integer $n$. Prove that there exists a positive integer $M$ such that $f(M, n) = 1$ for all integers $n$ such that $|n| \leq \frac{(5^{2003}-1)}{2}$ and $f(M, n) = 0$ for all integers n such that $|n| > \frac{5^{2003}-1}{2}.$

2013 Putnam, 4

A finite collection of digits $0$ and $1$ is written around a circle. An [i]arc[/i] of length $L\ge 0$ consists of $L$ consecutive digits around the circle. For each arc $w,$ let $Z(w)$ and $N(w)$ denote the number of $0$'s in $w$ and the number of $1$'s in $w,$ respectively. Assume that $|Z(w)-Z(w')|\le 1$ for any two arcs $w,w'$ of the same length. Suppose that some arcs $w_1,\dots,w_k$ have the property that \[Z=\frac1k\sum_{j=1}^kZ(w_j)\text{ and }N=\frac1k\sum_{j=1}^k N(w_j)\] are both integers. Prove that there exists an arc $w$ with $Z(w)=Z$ and $N(w)=N.$

2003 USA Team Selection Test, 1

For a pair of integers $a$ and $b$, with $0 < a < b < 1000$, set $S\subseteq \{ 1, 2, \dots , 2003\}$ is called a [i]skipping set[/i] for $(a, b)$ if for any pair of elements $s_1, s_2 \in S$, $|s_1 - s_2|\not\in \{ a, b\}$. Let $f(a, b)$ be the maximum size of a skipping set for $(a, b)$. Determine the maximum and minimum values of $f$.

2007 Balkan MO, 3

Find all positive integers $n$ such that there exist a permutation $\sigma$ on the set $\{1,2,3, \ldots, n\}$ for which \[\sqrt{\sigma(1)+\sqrt{\sigma(2)+\sqrt{\ldots+\sqrt{\sigma(n-1)+\sqrt{\sigma(n)}}}}}\] is a rational number.

2018 Bundeswettbewerb Mathematik, 2

Find all real numbers $x$ satisfying the equation \[\left\lfloor \frac{20}{x+18}\right\rfloor+\left\lfloor \frac{x+18}{20}\right\rfloor=1.\]

2015 Peru IMO TST, 6

Let $n > 1$ be a given integer. Prove that infinitely many terms of the sequence $(a_k )_{k\ge 1}$, defined by \[a_k=\left\lfloor\frac{n^k}{k}\right\rfloor,\] are odd. (For a real number $x$, $\lfloor x\rfloor$ denotes the largest integer not exceeding $x$.) [i]Proposed by Hong Kong[/i]

2024 ELMO Shortlist, A2

Let $n$ be a positive integer. Find the number of sequences $a_0,a_1,a_2,\dots,a_{2n}$ of integers in the range $[0,n]$ such that for all integers $0\leq k\leq n$ and all nonnegative integers $m$, there exists an integer $k\leq i\leq 2k$ such that $\lfloor k/2^m\rfloor=a_i.$ [i]Andrew Carratu[/i]

2006 Junior Balkan MO, 1

If $n>4$ is a composite number, then $2n$ divides $(n-1)!$.

2017 HMNT, 6

A positive integer $n$ is [i]magical[/i] if $\lfloor \sqrt{\lceil \sqrt{n} \rceil} \rfloor=\lceil \sqrt{\lfloor \sqrt{n} \rfloor} \rceil$. Find the number of magical integers between $1$ and $10,000$ inclusive.

1992 IMO Longlists, 47

Evaluate \[\left \lfloor \ \prod_{n=1}^{1992} \frac{3n+2}{3n+1} \ \right \rfloor\]

1998 Estonia National Olympiad, 4

A real number $a$ satisfies the equality $\frac{1}{a} = a - [a]$. Prove that $a$ is irrational.

2005 Rioplatense Mathematical Olympiad, Level 3, 1

Find all numbers $n$ that can be expressed in the form $n=k+2\lfloor\sqrt{k}\rfloor+2$ for some nonnegative integer $k$.

2010 Contests, 1

Let $D$ be the set of all pairs $(i,j)$, $1\le i,j\le n$. Prove there exists a subset $S \subset D$, with $|S|\ge\left \lfloor\frac{3n(n+1)}{5}\right \rfloor$, such that for any $(x_1,y_1), (x_2,y_2) \in S$ we have $(x_1+x_2,y_1+y_2) \not \in S$. (Peter Cameron)

PEN I Problems, 18

Do there exist irrational numbers $a, b>1$ and $\lfloor a^{m}\rfloor \not=\lfloor b^{n}\rfloor $ for any positive integers $m$ and $n$?

PEN P Problems, 6

Show that every integer greater than $1$ can be written as a sum of two square-free integers.

1977 IMO Shortlist, 11

Let $n$ be an integer greater than $1$. Define \[x_1 = n, y_1 = 1, x_{i+1} =\left[ \frac{x_i+y_i}{2}\right] , y_{i+1} = \left[ \frac{n}{x_{i+1}}\right], \qquad \text{for }i = 1, 2, \ldots\ ,\] where $[z]$ denotes the largest integer less than or equal to $z$. Prove that \[ \min \{x_1, x_2, \ldots, x_n \} =[ \sqrt n ]\]

2013 Federal Competition For Advanced Students, Part 2, 1

For each pair $(a,b)$ of positive integers, determine all non-negative integers $n$ such that \[b+\left\lfloor{\frac{n}{a}}\right\rfloor=\left\lceil{\frac{n+b}{a}}\right\rceil.\]

2015 International Zhautykov Olympiad, 1

Determine the maximum integer $ n $ such that for each positive integer $ k \le \frac{n}{2} $ there are two positive divisors of $ n $ with difference $ k $.

2019 Taiwan APMO Preliminary Test, P4

We define a sequence ${a_n}$: $$a_1=1,a_{n+1}=\sqrt{a_n+n^2},n=1,2,...$$ (1)Find $\lfloor a_{2019}\rfloor$ (2)Find $\lfloor a_{1}^2\rfloor+\lfloor a_{2}^2\rfloor+...+\lfloor a_{20}^2\rfloor$