This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1187

2014 AMC 10, 25

The number $5^{867}$ is between $2^{2013}$ and $2^{2014}$. How many pairs of integers $(m,n)$ are there such that $1\leq m\leq 2012$ and \[5^n<2^m<2^{m+2}<5^{n+1}?\] $\textbf{(A) }278\qquad \textbf{(B) }279\qquad \textbf{(C) }280\qquad \textbf{(D) }281\qquad \textbf{(E) }282\qquad$

1996 AIME Problems, 15

In parallelogram $ABCD,$ let $O$ be the intersection of diagonals $\overline{AC}$ and $\overline{BD}.$ Angles $CAB$ and $DBC$ are each twice as large as angle $DBA,$ and angle $ACB$ is $r$ times as large as angle $AOB.$ Find the greatest integer that does not exceed $1000r.$

2020 AMC 10, 22

For how many positive integers $n \le 1000$ is $$\left\lfloor \dfrac{998}{n} \right\rfloor+\left\lfloor \dfrac{999}{n} \right\rfloor+\left\lfloor \dfrac{1000}{n}\right \rfloor$$ not divisible by $3$? (Recall that $\lfloor x \rfloor$ is the greatest integer less than or equal to $x$.) $\textbf{(A) } 22 \qquad\textbf{(B) } 23 \qquad\textbf{(C) } 24 \qquad\textbf{(D) } 25 \qquad\textbf{(E) } 26$

2011 NIMO Summer Contest, 3

Define $\lfloor x \rfloor$ as the largest integer less than or equal to $x$. Define $\{x \} = x - \lfloor x \rfloor$. For example, $\{ 3 \} = 3-3 = 0$, $\{ \pi \} = \pi - 3$, and $\{ - \pi \} = 4-\pi$. If $\{n\} + \{ 3n\} = 1.4$, then find the sum of all possible values of $100\{n\}$. [i]Proposed by Isabella Grabski [/i]

2023 Regional Olympiad of Mexico West, 3

Let $x>1$ be a real number that is not an integer. Denote $\{x\}$ as its decimal part and $\lfloor x\rfloor$ the floor function. Prove that $$ \left(\frac{x+\{x\}}{\lfloor x\rfloor}-\frac{\lfloor x\rfloor}{x+\{x\}}\right)+\left(\frac{x+\lfloor x\rfloor}{\{x\}}-\frac{\{x\}}{x+\lfloor x\rfloor}\right)>\frac{16}{3}$$

2013 Harvard-MIT Mathematics Tournament, 4

Let $a_1$, $a_2$, $a_3$, $a_4$, $a_5$ be real numbers whose sum is $20$. Determine with proof the smallest possible value of \[ \displaystyle\sum_{1\le i \le j \le 5} \lfloor a_i + a_j \rfloor. \]

1998 French Mathematical Olympiad, Problem 3

Let $k\ge2$ be an integer. The function $f:\mathbb N\to\mathbb N$ is defined by $$f(n)=n+\left\lfloor\sqrt[k]{n+\sqrt[k]n}\right\rfloor.$$Determine the set of values taken by the function $f$.

2010 Korea - Final Round, 3

There are $ n$ websites $ 1,2,\ldots,n$ ($ n \geq 2$). If there is a link from website $ i$ to $ j$, we can use this link so we can move website $ i$ to $ j$. For all $ i \in \left\{1,2,\ldots,n - 1 \right\}$, there is a link from website $ i$ to $ i+1$. Prove that we can add less or equal than $ 3(n - 1)\log_{2}(\log_{2} n)$ links so that for all integers $ 1 \leq i < j \leq n$, starting with website $ i$, and using at most three links to website $ j$. (If we use a link, website's number should increase. For example, No.7 to 4 is impossible). Sorry for my bad English.

2004 Harvard-MIT Mathematics Tournament, 4

Evaluate the sum \[ \dfrac {1}{2 \lfloor \sqrt {1} \rfloor + 1} + \dfrac {1}{2 \lfloor \sqrt {2} \rfloor + 1} + \dfrac {1}{2 \lfloor \sqrt {3} \rfloor + 1} + \cdots + \dfrac {1}{2 \lfloor \sqrt {100} \rfloor + 1} \]

1986 AMC 12/AHSME, 25

If $\lfloor x\rfloor$ is the greatest integer less than or equal to $x$, then \[\displaystyle\sum_{N=1}^{1024} \lfloor \log_{2}N\rfloor = \] $ \textbf{(A)}\ 8192\qquad\textbf{(B)}\ 8204\qquad\textbf{(C)}\ 9218\qquad\textbf{(D)}\ \lfloor \log_{2}(1024!)\rfloor\qquad\textbf{(E)}\ \text{none of these} $

2016 Germany Team Selection Test, 1

Determine all positive integers $M$ such that the sequence $a_0, a_1, a_2, \cdots$ defined by \[ a_0 = M + \frac{1}{2} \qquad \textrm{and} \qquad a_{k+1} = a_k\lfloor a_k \rfloor \quad \textrm{for} \, k = 0, 1, 2, \cdots \] contains at least one integer term.

2012 Indonesia TST, 4

Determine all natural numbers $n$ such that for each natural number $a$ relatively prime with $n$ and $a \le 1 + \left\lfloor \sqrt{n} \right\rfloor$ there exists some integer $x$ with $a \equiv x^2 \mod n$. Remark: "Natural numbers" is the set of positive integers.

2017 Princeton University Math Competition, 9

The set $\{(x, y) \in R^2| \lfloor x + y\rfloor \cdot \lceil x + y\rceil = (\lfloor x\rfloor + \lceil y \rceil ) (\lceil x \rceil + \lfloor y\rfloor), 0 \le x, y \le 100\}$ can be thought of as a collection of line segments in the plane. If the total length of those line segments is $a + b\sqrt{c}$ for $c$ squarefree, find $a + b + c$. ($\lfloor z\rfloor$ is the greatest integer less than or equal to $z$, and $\lceil z \rceil$ is the least integer greater than or equal to $z$, for $z \in R$.)

2018 Korea Winter Program Practice Test, 1

Find all functions $f : \mathbb{R} \rightarrow \mathbb{R}$ satisfying the following conditions : 1) $f(x+y)-f(x)-f(y) \in \{0,1\} $ for all $x,y \in \mathbb{R}$ 2) $\lfloor f(x) \rfloor = \lfloor x \rfloor $ for all real $x$.

2013 Korea - Final Round, 3

For a positive integer $n \ge 2 $, define set $ T = \{ (i,j) | 1 \le i < j \le n , i | j \} $. For nonnegative real numbers $ x_1 , x_2 , \cdots , x_n $ with $ x_1 + x_2 + \cdots + x_n = 1 $, find the maximum value of \[ \sum_{(i,j) \in T} x_i x_j \] in terms of $n$.

1979 IMO Longlists, 2

For a finite set $E$ of cardinality $n \geq 3$, let $f(n)$ denote the maximum number of $3$-element subsets of $E$, any two of them having exactly one common element. Calculate $f(n)$.

1995 IberoAmerican, 3

A function $f: \N\rightarrow\N$ is circular if for every $p\in\N$ there exists $n\in\N,\ n\leq{p}$ such that $f^n(p)=p$ ($f$ composed with itself $n$ times) The function $f$ has repulsion degree $k>0$ if for every $p\in\N$ $f^i(p)\neq{p}$ for every $i=1,2,\dots,\lfloor{kp}\rfloor$. Determine the maximum repulsion degree can have a circular function. [b]Note:[/b] Here $\lfloor{x}\rfloor$ is the integer part of $x$.

2014 Contests, 1

Find the smallest possible value of the expression \[\left\lfloor\frac{a+b+c}{d}\right\rfloor+\left\lfloor\frac{b+c+d}{a}\right\rfloor+\left\lfloor\frac{c+d+a}{b}\right\rfloor+\left\lfloor\frac{d+a+b}{c}\right\rfloor\] in which $a,~ b,~ c$, and $d$ vary over the set of positive integers. (Here $\lfloor x\rfloor$ denotes the biggest integer which is smaller than or equal to $x$.)

2024 Philippine Math Olympiad, P6

The sequence $\{a_n\}_{n\ge 1}$ of real numbers is defined as follows: $$a_1=1, \quad \text{and}\quad a_{n+1}=\frac{1}{2\lfloor a_n \rfloor -a_n+1} \quad \text{for all} \quad n\ge 1$$ Find $a_{2024}$.

1994 Brazil National Olympiad, 3

We are given n objects of identical appearance, but different mass, and a balance which can be used to compare any two objects (but only one object can be placed in each pan at a time). How many times must we use the balance to find the heaviest object and the lightest object?

2012 Indonesia TST, 1

Suppose a function $f : \mathbb{Z}^+ \rightarrow \mathbb{Z}^+$ satisfies $f(f(n)) + f(n+1) = n+2$ for all positive integer $n$. Prove that $f(f(n)+n) = n+1$ for all positive integer $n$.

2011 Vietnam Team Selection Test, 4

Let $\langle a_n\rangle_{n\ge 0}$ be a sequence of integers satisfying $a_0=1, a_1=3$ and $a_{n+2}=1+\left\lfloor \frac{a_{n+1}^2}{a_n}\right\rfloor \ \ \forall n\ge0.$ Prove that $a_n\cdot a_{n+2}-a_{n+1}^2=2^n$ for every natural number $n.$

2010 Contests, A1

Given a positive integer $n,$ what is the largest $k$ such that the numbers $1,2,\dots,n$ can be put into $k$ boxes so that the sum of the numbers in each box is the same? [When $n=8,$ the example $\{1,2,3,6\},\{4,8\},\{5,7\}$ shows that the largest $k$ is [i]at least[/i] 3.]

2019 LIMIT Category B, Problem 11

$$\left\lfloor\left(1\cdot2+2\cdot2^2+\ldots+100\cdot2^{100}\right)\cdot9^{-901}\right\rfloor=?$$

2016 India PRMO, 12

Let $S = 1 + \frac{1}{\sqrt2}+ \frac{1}{\sqrt3}+\frac{1}{\sqrt4}+...+ \frac{1}{\sqrt{99}}+ \frac{1}{\sqrt{100}}$ . Find $[S]$. You may use the fact that $\sqrt{n} < \frac12 (\sqrt{n} +\sqrt{n+1}) <\sqrt{n+1}$ for all integers $n \ge 1$.