This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1187

2022 China Team Selection Test, 2

Two positive real numbers $\alpha, \beta$ satisfies that for any positive integers $k_1,k_2$, it holds that $\lfloor k_1 \alpha \rfloor \neq \lfloor k_2 \beta \rfloor$, where $\lfloor x \rfloor$ denotes the largest integer less than or equal to $x$. Prove that there exist positive integers $m_1,m_2$ such that $\frac{m_1}{\alpha}+\frac{m_2}{\beta}=1$.

2001 All-Russian Olympiad, 1

The integers from $1$ to $999999$ are partitioned into two groups: the first group consists of those integers for which the closest perfect square is odd, whereas the second group consists of those for which the closest perfect square is even. In which group is the sum of the elements greater?

2013 Brazil Team Selection Test, 2

Determine all positive integers $n$ for which $\dfrac{n^2+1}{[\sqrt{n}]^2+2}$ is an integer. Here $[r]$ denotes the greatest integer less than or equal to $r$.

1996 AIME Problems, 4

A wooden cube, whose edges are one centimeter long, rests on a horizontal surface. Illuminated by a point source of light that is $x$ centimeters directly above an upper vertex, the cube casts a shadow on the horizontal surface. The area of the shadow, which does not inclued the area beneath the cube is 48 square centimeters. Find the greatest integer that does not exceed $1000x.$

2007 District Olympiad, 3

Let $a,b\in \mathbb{R}$. Evaluate: \[\lim_{n\to \infty}\left(\sqrt{a^2n^2+bn}-an\right)\] Consider the sequence $(x_n)_{n\ge 1}$, defined by $x_n=\sqrt{n}-\lfloor \sqrt{n}\rfloor$. Denote by $A$ the set of the points $x\in \mathbb{R}$, for which there is a subsequence of $(x_n)_{n\ge 1}$ tending to $x$. a) Prove that $\mathbb{Q}\cap [0,1]\subset A$. b) Find $A$.

Kvant 2020, M2618

For a given number $\alpha{}$ let $f_\alpha$ be a function defined as \[f_\alpha(x)=\left\lfloor\alpha x+\frac{1}{2}\right\rfloor.\]Let $\alpha>1$ and $\beta=1/\alpha$. Prove that for any natural $n{}$ the relation $f_\beta(f_\alpha(n))=n$ holds. [i]Proposed by I. Dorofeev[/i]

2006 National Olympiad First Round, 7

How many positive integers are there such that $\left \lfloor \frac m{11} \right \rfloor = \left \lfloor \frac m{10} \right \rfloor$? ($\left \lfloor x \right \rfloor$ denotes the greatest integer not exceeding $x$.) $ \textbf{(A)}\ 44 \qquad\textbf{(B)}\ 48 \qquad\textbf{(C)}\ 52 \qquad\textbf{(D)}\ 54 \qquad\textbf{(E)}\ 56 $

1989 AIME Problems, 11

A sample of 121 integers is given, each between 1 and 1000 inclusive, with repetitions allowed. The sample has a unique mode (most frequent value). Let $D$ be the difference between the mode and the arithmetic mean of the sample. What is the largest possible value of $\lfloor D\rfloor$? (For real $x$, $\lfloor x\rfloor$ is the greatest integer less than or equal to $x$.)

2012 Middle European Mathematical Olympiad, 2

Let $ N $ be a positive integer. A set $ S \subset \{ 1, 2, \cdots, N \} $ is called [i]allowed[/i] if it does not contain three distinct elements $ a, b, c $ such that $ a $ divides $ b $ and $ b $ divides $c$. Determine the largest possible number of elements in an allowed set $ S $.

1990 All Soviet Union Mathematical Olympiad, 523

Find all integers $n$ such that $\left[\frac{n}{1!}\right] + \left[\frac{n}{2!}\right] + ... + \left[\frac{n}{10!}\right] = 1001$.

2014 China Team Selection Test, 1

Prove that for any positive integers $k$ and $N$, \[\left(\frac{1}{N}\sum\limits_{n=1}^{N}(\omega (n))^k\right)^{\frac{1}{k}}\leq k+\sum\limits_{q\leq N}\frac{1}{q},\] where $\sum\limits_{q\leq N}\frac{1}{q}$ is the summation over of prime powers $q\leq N$ (including $q=1$). Note: For integer $n>1$, $\omega (n)$ denotes number of distinct prime factors of $n$, and $\omega (1)=0$.

1989 India National Olympiad, 4

Determine all $n \in \mathbb{N}$ for which [list][*] $n$ is not the square of any integer, [*] $\lfloor \sqrt{n}\rfloor ^3$ divides $n^2$. [/list]

PEN P Problems, 12

The positive function $p(n)$ is defined as the number of ways that the positive integer $n$ can be written as a sum of positive integers. Show that, for all positive integers $n \ge 2$, \[2^{\lfloor \sqrt{n}\rfloor}< p(n) < n^{3 \lfloor\sqrt{n}\rfloor }.\]

2012 Rioplatense Mathematical Olympiad, Level 3, 4

Find all real numbers $x$, such that: a) $\lfloor x \rfloor + \lfloor 2x \rfloor +...+ \lfloor 2012x \rfloor = 2013$ b) $\lfloor x \rfloor + \lfloor 2x \rfloor +...+ \lfloor 2013x \rfloor = 2014$

2016 India PRMO, 10

Let $M$ be the maximum value of $(6x-3y-8z)$, subject to $2x^2+3y^2+4z^2 = 1$. Find $[M]$.

1992 IMO Longlists, 79

Let $ \lfloor x \rfloor$ denote the greatest integer less than or equal to $ x.$ Pick any $ x_1$ in $ [0, 1)$ and define the sequence $ x_1, x_2, x_3, \ldots$ by $ x_{n\plus{}1} \equal{} 0$ if $ x_n \equal{} 0$ and $ x_{n\plus{}1} \equal{} \frac{1}{x_n} \minus{} \left \lfloor \frac{1}{x_n} \right \rfloor$ otherwise. Prove that \[ x_1 \plus{} x_2 \plus{} \ldots \plus{} x_n < \frac{F_1}{F_2} \plus{} \frac{F_2}{F_3} \plus{} \ldots \plus{} \frac{F_n}{F_{n\plus{}1}},\] where $ F_1 \equal{} F_2 \equal{} 1$ and $ F_{n\plus{}2} \equal{} F_{n\plus{}1} \plus{} F_n$ for $ n \geq 1.$

II Soros Olympiad 1995 - 96 (Russia), 9.4

Solve the equation $x^2- 10[x] + 9 = 0$. ($[x]$ is the integer part of $x$, $[x]$ is equal to the largest integer not exceeding $x$. For example, $[3,33] = 3$, $[2] = 2$, $[- 3.01] = -4$).

VMEO III 2006 Shortlist, A7

Prove that for all $n\in\mathbb{Z}^+$, we have \[ \sum\limits_{p=1}^n\sum\limits_{q=1}^p\left\lfloor -\frac{1+\sqrt{8q+(2p-1)^2}}{2}\right\rfloor =-\frac{n(n+1)(n+2)}{3} \]

2011 Math Prize For Girls Problems, 12

If $x$ is a real number, let $\lfloor x \rfloor$ be the greatest integer that is less than or equal to $x$. If $n$ is a positive integer, let $S(n)$ be defined by \[ S(n) = \left\lfloor \frac{n}{10^{\lfloor \log n \rfloor}} \right\rfloor + 10 \left( n - 10^{\lfloor \log n \rfloor} \cdot \left\lfloor \frac{n}{10^{\lfloor \log n \rfloor}} \right\rfloor \right) \, . \] (All the logarithms are base 10.) How many integers $n$ from 1 to 2011 (inclusive) satisfy $S(S(n)) = n$?

ICMC 6, 6

Consider the sequence defined by $a_1 = 2022$ and $a_{n+1} = a_n + e^{-a_n}$ for $n \geq 1$. Prove that there exists a positive real number $r$ for which the sequence $$\{ra_1\}, \{ra_{10}\}, \{ra_{100}\}, . . . $$converges. [i]Note[/i]: $\{x \} = x - \lfloor x \rfloor$ denotes the part of $x$ after the decimal point. [i]Proposed by Ethan Tan[/i]

2007 ITest, 55

Let $T=\text{TNFTPP}$, and let $R=T-914$. Let $x$ be the smallest real solution of \[3x^2+Rx+R=90x\sqrt{x+1}.\] Find the value of $\lfloor x\rfloor$.

2018 Iran MO (1st Round), 7

What is the enclosed area between the graph of $y=\lfloor 10x \rfloor + \sqrt{1-x^2}$ in the interval $[0,1]$ and the $x$ axis?

2007 ITest, 40

Let $S$ be the sum of all $x$ such that $1\leq x\leq 99$ and \[\{x^2\}=\{x\}^2.\] Compute $\lfloor S\rfloor$.

PEN I Problems, 10

Show that for all primes $p$, \[\sum^{p-1}_{k=1}\left \lfloor \frac{k^{3}}{p}\right \rfloor =\frac{(p+1)(p-1)(p-2)}{4}.\]

2010 China National Olympiad, 1

Let $m,n\ge 1$ and $a_1 < a_2 < \ldots < a_n$ be integers. Prove that there exists a subset $T$ of $\mathbb{N}$ such that \[|T| \leq 1+ \frac{a_n-a_1}{2n+1}\] and for every $i \in \{1,2,\ldots , m\}$, there exists $t \in T$ and $s \in [-n,n]$, such that $a_i=t+s$.