Found problems: 1187
2023 Myanmar IMO Training, 5
For a real number $x$, let $\lfloor x\rfloor$ stand for the largest integer that is less than or equal to $x$. Prove that
\[ \left\lfloor{(n-1)!\over n(n+1)}\right\rfloor \]
is even for every positive integer $n$.
2008 ITest, 36
Let $c$ be the probability that the cards are neither from the same suit or the same rank. Compute $\lfloor 1000c\rfloor$.
PEN P Problems, 21
Let $A$ be the set of positive integers of the form $a^2 +2b^2$, where $a$ and $b$ are integers and $b \neq 0$. Show that if $p$ is a prime number and $p^2 \in A$, then $p \in A$.
2007 Croatia Team Selection Test, 2
Prove that the sequence $a_{n}=\lfloor n\sqrt 2 \rfloor+\lfloor n\sqrt 3 \rfloor$ contains infintely many even and infinitely many odd numbers.
2013 Math Prize For Girls Problems, 8
Let $R$ be the set of points $(x, y)$ such that $x$ and $y$ are positive, $x + y$ is at most 2013, and
\[
\lceil x \rceil \lfloor y \rfloor = \lfloor x \rfloor \lceil y \rceil.
\]
Compute the area of set $R$. Recall that $\lfloor a \rfloor$ is the greatest integer that is less than or equal to $a$, and $\lceil a \rceil$ is the least integer that is greater than or equal to $a$.
2010 India National Olympiad, 2
Find all natural numbers $ n > 1$ such that $ n^{2}$ does $ \text{not}$ divide $ (n \minus{} 2)!$.
2000 Iran MO (3rd Round), 3
Suppose $f : \mathbb{N} \longrightarrow \mathbb{N}$ is a function that satisfies $f(1) = 1$ and
$f(n + 1) =\{\begin{array}{cc} f(n)+2&\mbox{if}\ n=f(f(n)-n+1),\\f(n)+1& \mbox{Otherwise}\end {array}$
$(a)$ Prove that $f(f(n)-n+1)$ is either $n$ or $n+1$.
$(b)$ Determine$f$.
1984 IMO Longlists, 64
For a matrix $(p_{ij})$ of the format $m\times n$ with real entries, set
\[a_i =\displaystyle\sum_{j=1}^n p_{ij}\text{ for }i = 1,\cdots,m\text{ and }b_j =\displaystyle\sum_{i=1}^m p_{ij}\text{ for }j = 1, . . . , n\longrightarrow(1)\]
By integering a real number, we mean replacing the number with the integer closest to it. Prove that integering the numbers $a_i, b_j, p_{ij}$ can be done in such a way that $(1)$ still holds.
2011 China National Olympiad, 1
Let $a_1,a_2,\ldots,a_n$ are real numbers, prove that;
\[\sum_{i=1}^na_i^2-\sum_{i=1}^n a_i a_{i+1} \le \left\lfloor \frac{n}{2}\right\rfloor(M-m)^2.\]
where $a_{n+1}=a_1,M=\max_{1\le i\le n} a_i,m=\min_{1\le i\le n} a_i$.
2005 France Team Selection Test, 4
Let $X$ be a non empty subset of $\mathbb{N} = \{1,2,\ldots \}$. Suppose that for all $x \in X$, $4x \in X$ and $\lfloor \sqrt{x} \rfloor \in X$. Prove that $X=\mathbb{N}$.
2009 Putnam, B3
Call a subset $ S$ of $ \{1,2,\dots,n\}$ [i]mediocre[/i] if it has the following property: Whenever $ a$ and $ b$ are elements of $ S$ whose average is an integer, that average is also an element of $ S.$ Let $ A(n)$ be the number of mediocre subsets of $ \{1,2,\dots,n\}.$ [For instance, every subset of $ \{1,2,3\}$ except $ \{1,3\}$ is mediocre, so $ A(3)\equal{}7.$] Find all positive integers $ n$ such that $ A(n\plus{}2)\minus{}2A(n\plus{}1)\plus{}A(n)\equal{}1.$
PEN H Problems, 55
Given that \[34! = 95232799cd96041408476186096435ab000000_{(10)},\] determine the digits $a, b, c$, and $d$.
2005 Baltic Way, 7
A rectangular array has $ n$ rows and $ 6$ columns, where $ n \geq 2$. In each cell there is written either $ 0$ or $ 1$. All rows in the array are different from each other. For each two rows $ (x_{1},x_{2},x_{3},x_{4},x_{5},x_{6})$ and $ (y_{1},y_{2},y_{3},y_{4},y_{5},y_{6})$, the row $ (x_{1}y_{1},x_{2}y_{2},x_{3}y_{3},x_{4}y_{4},x_{5}y_{5},x_{6}y_{6})$ can be found in the array as well. Prove that there is a column in which at least half of the entries are zeros.
2015 Chile National Olympiad, 4
Find the number of different numbers of the form $\left\lfloor\frac{i^2}{2015} \right\rfloor$, with $i = 1,2, ..., 2015$.
2009 Math Prize For Girls Problems, 1
How many ordered pairs of integers $ (x, y)$ are there such that
\[ 0 < \left\vert xy \right\vert < 36?\]
2010 Contests, 2
Let $r$ and $s$ be positive integers. Define $a_0 = 0$, $a_1 = 1$, and $a_n = ra_{n-1} + sa_{n-2}$ for $n \geq 2$. Let $f_n = a_1a_2\cdots a_n$. Prove that $\displaystyle\frac{f_n}{f_kf_{n-k}}$ is an integer for all integers $n$ and $k$ such that $0 < k < n$.
[i]Evan O' Dorney.[/i]
1973 Czech and Slovak Olympiad III A, 4
For any integer $n\ge2$ evaluate the sum \[\sum_{k=1}^{n^2-1}\bigl\lfloor\sqrt k\bigr\rfloor.\]
2006 Putnam, B3
Let $S$ be a finite set of points in the plane. A linear partition of $S$ is an unordered pair $\{A,B\}$ of subsets of $S$ such that $A\cup B=S,\ A\cap B=\emptyset,$ and $A$ and $B$ lie on opposite sides of some straight line disjoint from $S$ ($A$ or $B$ may be empty). Let $L_{S}$ be the number of linear partitions of $S.$ For each positive integer $n,$ find the maximum of $L_{S}$ over all sets $S$ of $n$ points.
2014 AMC 12/AHSME, 21
For every real number $x$, let $\lfloor x\rfloor$ denote the greatest integer not exceeding $x$, and let \[f(x)=\lfloor x\rfloor(2014^{x-\lfloor x\rfloor}-1).\] The set of all numbers $x$ such that $1\leq x<2014$ and $f(x)\leq 1$ is a union of disjoint intervals. What is the sum of the lengths of those intervals?
$\textbf{(A) }1\qquad
\textbf{(B) }\dfrac{\log 2015}{\log 2014}\qquad
\textbf{(C) }\dfrac{\log 2014}{\log 2013}\qquad
\textbf{(D) }\dfrac{2014}{2013}\qquad
\textbf{(E) }2014^{\frac1{2014}}\qquad$
2007 Princeton University Math Competition, 3
Find the minimum number of colors necessary to color the integers from $1$ to $2007$ such that if distinct integers $a$, $b$, and $c$ are the same color, then $a \nmid b$ or $b \nmid c$.
2023 District Olympiad, P2
[list=a]
[*]Determine all real numbers $x{}$ satisfying $\lfloor x\rfloor^2-x=-0.99$.
[*]Prove that if $a\leqslant -1$, the equation $\lfloor x\rfloor^2-x=a$ does not have real solutions.
[/list]
2014 PUMaC Algebra B, 6
There is a sequence with $a(2)=0$, $a(3)=1$ and $a(n)=a\left(\left\lfloor\dfrac n2\right\rfloor\right)+a\left(\left\lceil\dfrac n2\right\rceil\right)$ for $n\geq 4$. Find $a(2014)$. [Note that $\left\lfloor\dfrac n2\right\rfloor$ and $\left\lceil\dfrac n2\right\rceil$ denote the floor function (largest integer $\leq\tfrac n2$) and the ceiling function (smallest integer $\geq\tfrac n2$), respectively.]
1998 Czech And Slovak Olympiad IIIA, 1
Solve the equation $x\cdot [x\cdot [x \cdot [x]]] = 88$ in the set of real numbers.
2011 USAMTS Problems, 3
Find all integers $b$ such that there exists a positive real number $x$ with \[ \dfrac {1}{b} = \dfrac {1}{\lfloor 2x \rfloor} + \dfrac {1}{\lfloor 5x \rfloor} \] Here, $\lfloor y \rfloor$ denotes the greatest integer that is less than or equal to $y$.
2008 Stars Of Mathematics, 1
Prove that for any positive integer $m$, the equation
\[ \frac{n}{m}\equal{}\lfloor\sqrt[3]{n^2}\rfloor\plus{}\lfloor\sqrt{n}\rfloor\plus{}1\]
has (at least) a positive integer solution $n_{m}$.
[i]Cezar Lupu & Dan Schwarz[/i]