This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1187

1966 AMC 12/AHSME, 29

The number of postive integers less than $1000$ divisible by neither $5$ nor $7$ is: $\text{(A)}\ 688 \qquad \text{(B)}\ 686\qquad \text{(C)}\ 684 \qquad \text{(D)}\ 658\qquad \text{(E)}\ 630$

2002 APMO, 1

Let $a_1,a_2,a_3,\ldots,a_n$ be a sequence of non-negative integers, where $n$ is a positive integer. Let \[ A_n={a_1+a_2+\cdots+a_n\over n}\ . \] Prove that \[ a_1!a_2!\ldots a_n!\ge\left(\lfloor A_n\rfloor !\right)^n \] where $\lfloor A_n\rfloor$ is the greatest integer less than or equal to $A_n$, and $a!=1\times 2\times\cdots\times a$ for $a\ge 1$(and $0!=1$). When does equality hold?

2014 China Team Selection Test, 1

Prove that for any positive integers $k$ and $N$, \[\left(\frac{1}{N}\sum\limits_{n=1}^{N}(\omega (n))^k\right)^{\frac{1}{k}}\leq k+\sum\limits_{q\leq N}\frac{1}{q},\] where $\sum\limits_{q\leq N}\frac{1}{q}$ is the summation over of prime powers $q\leq N$ (including $q=1$). Note: For integer $n>1$, $\omega (n)$ denotes number of distinct prime factors of $n$, and $\omega (1)=0$.

2002 Irish Math Olympiad, 1

A $ 3 \times n$ grid is filled as follows. The first row consists of the numbers from $ 1$ to $ n$ arranged in ascending order. The second row is a cyclic shift of the top row: $ i,i\plus{}1,...,n,1,2,...,i\minus{}1$ for some $ i$. The third row has the numbers $ 1$ to $ n$ in some order so that in each of the $ n$ columns, the sum of the three numbers is the same. For which values of $ n$ is it possible to fill the grid in this way? For all such $ n$, determine the number of different ways of filling the grid.

2018 China Team Selection Test, 4

Let $k, M$ be positive integers such that $k-1$ is not squarefree. Prove that there exist a positive real $\alpha$, such that $\lfloor \alpha\cdot k^n \rfloor$ and $M$ are coprime for any positive integer $n$.

1997 Baltic Way, 3

Let $x_1=1$ and $x_{n+1} =x_n+\left\lfloor \frac{x_n}{n}\right\rfloor +2$, for $n=1,2,3,\ldots $ where $x$ denotes the largest integer not greater than $x$. Determine $x_{1997}$.

2003 Gheorghe Vranceanu, 3

Let be a sequence of functions $ a_n:\mathbb{R}\longrightarrow\mathbb{Z} $ defined as $ a_n(x)=\sum_{i=1}^n (-1)^i\lfloor xi\rfloor . $ [b]a)[/b] Find the real numbers $ y $ such that $ \left( a_n(y) \right)_{n\ge 1} $ converges to $ 1. $ [b]b)[/b] Find the real numbers $ z $ such that $ \left( a_n(z) \right)_{n\ge 1} $ converges.

2014 Postal Coaching, 2

Let $A=\{1,2,3,\ldots,40\}$. Find the least positive integer $k$ for which it is possible to partition $A$ into $k$ disjoint subsets with the property that if $a,b,c$ (not necessarily distinct) are in the same subset, then $a\ne b+c$.

2019 LIMIT Category C, Problem 8

The value of $$\left\lfloor\frac1{3!}+\frac4{4!}+\frac9{5!}+\ldots\right\rfloor$$

1998 National Olympiad First Round, 2

Let $ A$, $ B$ be the number of digits of $ 2^{1998}$ and $ 5^{1998}$ in decimal system. $ A \plus{} B \equal{} ?$ $\textbf{(A)}\ 1998 \qquad\textbf{(B)}\ 1999 \qquad\textbf{(C)}\ 2000 \qquad\textbf{(D)}\ 3996 \qquad\textbf{(E)}\ 3998$

2007 Mediterranean Mathematics Olympiad, 4

Let $x > 1$ be a non-integer number. Prove that \[\biggl( \frac{x+\{x\}}{[x]} - \frac{[x]}{x+\{x\}} \biggr) + \biggl( \frac{x+[x]}{ \{x \} } - \frac{ \{ x \}}{x+[x]} \biggr) > \frac 92 \]

2020 BMT Fall, 15

Consider a random string $s$ of $10^{2020}$ base-ten digits (there can be leading zeroes). We say a substring $s' $ (which has no leading zeroes) is self-locating if $s' $ appears in $s$ at index $s' $ where the string is indexed at $ 1$. For example the substring $11$ in the string “$122352242411$” is selflocating since the $11$th digit is $ 1$ and the $12$th digit is $ 1$. Let the expected number of self-locating substrings in s be $G$. Compute $\lfloor G \rfloor$.

2004 Bulgaria Team Selection Test, 2

Find all primes $p \ge 3$ such that $p- \lfloor p/q \rfloor q$ is a square-free integer for any prime $q<p$.

2005 AIME Problems, 6

Let $P$ be the product of the nonreal roots of $x^4-4x^3+6x^2-4x=2005$. Find $\lfloor P\rfloor$.

2003 India Regional Mathematical Olympiad, 4

Find the number of ordered triples $(x,y,z)$ of non-negative integers satisfying (i) $x \leq y \leq z$ (ii) $x + y + z \leq 100.$

2014 District Olympiad, 4

Let $n\geq2$ be a positive integer. Determine all possible values of the sum \[ S=\left\lfloor x_{2}-x_{1}\right\rfloor +\left\lfloor x_{3}-x_{2}\right\rfloor+...+\left\lfloor x_{n}-x_{n-1}\right\rfloor \] where $x_i\in \mathbb{R}$ satisfying $\lfloor{x_i}\rfloor=i$ for $i=1,2,\ldots n$.

2011 USA TSTST, 8

Let $x_0, x_1, \dots , x_{n_0-1}$ be integers, and let $d_1, d_2, \dots, d_k$ be positive integers with $n_0 = d_1 > d_2 > \cdots > d_k$ and $\gcd (d_1, d_2, \dots , d_k) = 1$. For every integer $n \ge n_0$, define \[ x_n = \left\lfloor{\frac{x_{n-d_1} + x_{n-d_2} + \cdots + x_{n-d_k}}{k}}\right\rfloor. \] Show that the sequence $\{x_n\}$ is eventually constant.

1990 Greece National Olympiad, 4

Froa nay real $x$, we denote $[x]$, the integer part of $x$ and with $\{x\}$ the fractional part of $x$, such that $x=[x]+\{x\}$. a) Find at least one real $x$ such that$\{x\}+\left\{\frac{1}{x}\right\}=1$ b) Find all rationals $x$ such that $\{x\}+\left\{\frac{1}{x}\right\}=1$

2024 Bulgarian Autumn Math Competition, 10.3

Find all polynomials $P$ with integer coefficients, for which there exists a number $N$, such that for every natural number $n \geq N$, all prime divisors of $n+2^{\lfloor \sqrt{n} \rfloor}$ are also divisors of $P(n)$.

2021 Romania National Olympiad, 2

Let $a,b,c,d\in\mathbb{Z}_{\ge 0}$, $d\ne 0$ and the function $f:\mathbb{Z}_{\ge 0}\to\mathbb Z_{\ge 0}$ defined by \[f(n)=\left\lfloor \frac{an+b}{cn+d}\right\rfloor\text{ for all } n\in\mathbb{Z}_{\ge 0}.\] Prove that the following are equivalent: [list=1] [*] $f$ is surjective; [*] $c=0$, $b<d$ and $0<a\le d$. [/list] [i]Tiberiu Trif[/i]

2008 Putnam, B6

Let $ n$ and $ k$ be positive integers. Say that a permutation $ \sigma$ of $ \{1,2,\dots n\}$ is $ k$-[i]limited[/i] if $ |\sigma(i)\minus{}i|\le k$ for all $ i.$ Prove that the number of $ k$-limited permutations of $ \{1,2,\dots n\}$ is odd if and only if $ n\equiv 0$ or $ 1\pmod{2k\plus{}1}.$

2008 Bulgaria Team Selection Test, 3

Let $G$ be a directed graph with infinitely many vertices. It is known that for each vertex the outdegree is greater than the indegree. Let $O$ be a fixed vertex of $G$. For an arbitrary positive number $n$, let $V_{n}$ be the number of vertices which can be reached from $O$ passing through at most $n$ edges ( $O$ counts). Find the smallest possible value of $V_{n}$.

2022 Cyprus JBMO TST, 1

Determine all real numbers $x\in\mathbb{R}$ for which \[ \left\lfloor \frac{x}{2} \right\rfloor + \left\lfloor \frac{x}{3} \right\rfloor=x-2022. \] The notation $\lfloor z \rfloor$, for $z\in\mathbb{R}$, denotes the largest integer which is less than or equal to $z$. For example: \[\lfloor 3.98 \rfloor =3 \quad \text{and} \quad \lfloor 0.14 \rfloor =0.\]

2014 Contests, 2

$a)$ Let $n$ a positive integer. Prove that $gcd(n, \lfloor n\sqrt{2} \rfloor)<\sqrt[4]{8}\sqrt{n}$. $b)$ Prove that there are infinitely many positive integers $n$ such that $gcd(n, \lfloor n\sqrt{2} \rfloor)>\sqrt[4]{7.99}\sqrt{n}$.

2002 National Olympiad First Round, 24

How many positive integers $n$ are there such that the equation $\left \lfloor \sqrt[3] {7n + 2} \right \rfloor = \left \lfloor \sqrt[3] {7n + 3} \right \rfloor $ does not hold? $ \textbf{a)}\ 0 \qquad\textbf{b)}\ 1 \qquad\textbf{c)}\ 7 \qquad\textbf{d)}\ \text{Infinitely many} \qquad\textbf{e)}\ \text{None of above} $