Found problems: 4776
2008 Alexandru Myller, 4
Let be a function $ f:\mathbb{R}\rightarrow\mathbb{R} $ satisfying the following properties:
$ \text{(i)} $ is continuous on the rational numbers.
$ \text{(ii)} f(x)<f\left( x+\frac{1}{n}\right) , $ for any real $ x $ and natural $ n. $
Prove that $ f $ is increasing.
[i]Gabriel Mârşanu, Mihai Piticari[/i]
2016 India IMO Training Camp, 2
Find all functions $f:\mathbb{R}\to\mathbb{R}$ such that $$f\left(x^3+f(y)\right)=x^2f(x)+y,$$for all $x,y\in\mathbb{R}.$ (Here $\mathbb{R}$ denotes the set of all real numbers.)
2006 Turkey Team Selection Test, 2
How many ways are there to divide a $2\times n$ rectangle into rectangles having integral sides, where $n$ is a positive integer?
2011 USA Team Selection Test, 5
Let $c_n$ be a sequence which is defined recursively as follows: $c_0 = 1$, $c_{2n+1} = c_n$ for $n \geq 0$, and $c_{2n} = c_n + c_{n-2^e}$ for $n > 0$ where $e$ is the maximal nonnegative integer such that $2^e$ divides $n$. Prove that
\[\sum_{i=0}^{2^n-1} c_i = \frac{1}{n+2} {2n+2 \choose n+1}.\]
1985 IMO Longlists, 78
The sequence $f_1, f_2, \cdots, f_n, \cdots $ of functions is defined for $x > 0$ recursively by
\[f_1(x)=x , \quad f_{n+1}(x) = f_n(x) \left(f_n(x) + \frac 1n \right)\]
Prove that there exists one and only one positive number $a$ such that $0 < f_n(a) < f_{n+1}(a) < 1$ for all integers $n \geq 1.$
2002 Spain Mathematical Olympiad, Problem 3
The function $g$ is defined about the natural numbers and satisfies the following conditions:
$g(2) = 1$
$g(2n) = g(n)$
$g(2n+1) = g(2n) +1.$
Where $n$ is a natural number such that $1 \leq n \leq 2002$.
Find the maximum value $M$ of $g(n).$ Also, calculate how many values of $n$ satisfy the condition of $g(n) = M.$
2009 Singapore Team Selection Test, 1
Two circles are tangent to each other internally at a point $\ T $. Let the chord $\ AB $ of the larger circle be tangent to the smaller circle at a point $\ P $. Prove that the line $\ TP $ bisects $\ \angle ATB $.
2015 China Team Selection Test, 3
For all natural numbers $n$, define $f(n) = \tau (n!) - \tau ((n-1)!)$, where $\tau(a)$ denotes the number of positive divisors of $a$. Prove that there exist infinitely many composite $n$, such that for all naturals $m < n$, we have $f(m) < f(n)$.
2016 District Olympiad, 3
Find the continuous functions $ f:\mathbb{R}\longrightarrow\mathbb{R} $ having the following property:
$$ f\left( x+\frac{1}{n}\right) \le f(x) +\frac{1}{n},\quad\forall n\in\mathbb{Z}^* ,\quad\forall x\in\mathbb{R} . $$
2008 Iran MO (3rd Round), 2
Let $ g,f: \mathbb C\longrightarrow\mathbb C$ be two continuous functions such that for each $ z\neq 0$, $ g(z)\equal{}f(\frac1z)$. Prove that there is a $ z\in\mathbb C$ such that $ f(\frac1z)\equal{}f(\minus{}\bar z)$
1997 Israel National Olympiad, 4
Let $f : [0,1] \to [0,1]$ be a continuous, strictly increasing function such that $f(0) = 0$ and $f(1) = 1$. Prove that
$$f\left(\frac{1}{10}\right) + f\left(\frac{2}{10}\right) +...+f\left(\frac{9}{10}\right) +f^{-1}\left(\frac{1}{10}\right) +...+f^{-1}\left(\frac{9}{10}\right) \le \frac{99}{10}$$
2004 Germany Team Selection Test, 1
A function $f$ satisfies the equation
\[f\left(x\right)+f\left(1-\frac{1}{x}\right)=1+x\]
for every real number $x$ except for $x = 0$ and $x = 1$. Find a closed formula for $f$.
2006 MOP Homework, 4
Assume that $f : [0,1)\to R$ is a function such that $f(x)-x^3$ and $f(x)-3x$ are both increasing functions. Determine if $f(x)-x^2-x$ is also an increasing function.
1988 Greece National Olympiad, 1
Find all functions $f: \mathbb{R}\to\mathbb{R}$ that satidfy :
$$2f(x+y+xy)= a f(x)+ bf(y)+f(xy)$$ for any $x,y \in\mathbb{R}$ όπου $a,b\in\mathbb{R}$ with $a^2-a\ne b^2-b$
ICMC 6, 5
Let $[0, 1]$ be the set $\{x \in \mathbb{R} : 0 \leq x \leq 1\}$. Does there exist a continuous function $g : [0, 1] \to [0, 1]$ such that no line intersects the graph of $g$ infinitely many times, but for any positive integer $n$ there is a line intersecting $g$ more than $n$ times?
[i]Proposed by Ethan Tan[/i]
2013 VJIMC, Problem 1
Let $f:[0,\infty)\to\mathbb R$ be a differentiable function with $|f(x)|\le M$ and $f(x)f'(x)\ge\cos x$ for $x\in[0,\infty)$, where $M>0$. Prove that $f(x)$ does not have a limit as $x\to\infty$.
2014 CIIM, Problem 1
Let $g:[2013,2014]\to\mathbb{R}$ a function that satisfy the following two conditions:
i) $g(2013)=g(2014) = 0,$
ii) for any $a,b \in [2013,2014]$ it hold that $g\left(\frac{a+b}{2}\right) \leq g(a) + g(b).$
Prove that $g$ has zeros in any open subinterval $(c,d) \subset[2013,2014].$
1997 Vietnam National Olympiad, 3
Find the number of functions $ f: \mathbb N\rightarrow\mathbb N$ which satisfying:
(i) $ f(1) \equal{} 1$
(ii) $ f(n)f(n \plus{} 2) \equal{} f^2(n \plus{} 1) \plus{} 1997$ for every natural numbers n.
2001 AMC 12/AHSME, 24
In $ \triangle ABC$, $ \angle ABC \equal{} 45^\circ$. Point $ D$ is on $ \overline{BC}$ so that $ 2 \cdot BD \equal{} CD$ and $ \angle DAB \equal{} 15^\circ$. Find $ \angle ACB$.
[asy]
pair A, B, C, D;
A = origin;
real Bcoord = 3*sqrt(2) + sqrt(6);
B = Bcoord/2*dir(180);
C = sqrt(6)*dir(120);
draw(A--B--C--cycle);
D = (C-B)/2.4 + B;
draw(A--D);
label("$A$", A, dir(0));
label("$B$", B, dir(180));
label("$C$", C, dir(110));
label("$D$", D, dir(130));
[/asy]
$ \textbf{(A)} \ 54^\circ \qquad \textbf{(B)} \ 60^\circ \qquad \textbf{(C)} \ 72^\circ \qquad \textbf{(D)} \ 75^\circ \qquad \textbf{(E)} \ 90^\circ$
2014 Benelux, 2
Let $k\ge 1$ be a positive integer.
We consider $4k$ chips, $2k$ of which are red and $2k$ of which are blue. A sequence of those $4k$ chips can be transformed into another sequence by a so-called move, consisting of interchanging a number (possibly one) of consecutive red chips with an
equal number of consecutive blue chips. For example, we can move from $r\underline{bb}br\underline{rr}b$ to $r\underline{rr}br\underline{bb}b$ where $r$ denotes a red chip and $b$ denotes a blue chip.
Determine the smallest number $n$ (as a function of $k$) such that starting from any initial sequence of the $4k$ chips, we need at most $n$ moves to reach the state in which the first $2k$ chips are red.
1979 IMO Longlists, 27
For all rational $x$ satisfying $0 \leq x < 1$, the functions $f$ is defined by
\[f(x)=\begin{cases}\frac{f(2x)}{4},&\mbox{for }0 \leq x < \frac 12,\\ \frac 34+ \frac{f(2x - 1)}{4}, & \mbox{for } \frac 12 \leq x < 1.\end{cases}\]
Given that $x = 0.b_1b_2b_3 \cdots $ is the binary representation of $x$, find, with proof, $f(x)$.
1989 China Team Selection Test, 1
Let $\mathbb{N} = \{1,2, \ldots\}.$ Does there exists a function $f: \mathbb{N} \mapsto \mathbb{N}$ such that $\forall n \in \mathbb{N},$ $f^{1989}(n) = 2 \cdot n$ ?
2014 ELMO Shortlist, 8
Let $a, b, c$ be positive reals with $a^{2014}+b^{2014}+c^{2014}+abc=4$. Prove that
\[ \frac{a^{2013}+b^{2013}-c}{c^{2013}} + \frac{b^{2013}+c^{2013}-a}{a^{2013}} + \frac{c^{2013}+a^{2013}-b}{b^{2013}} \ge a^{2012}+b^{2012}+c^{2012}. \][i]Proposed by David Stoner[/i]
2000 China Team Selection Test, 1
Let $F$ be the set of all polynomials $\Gamma$ such that all the coefficients of $\Gamma (x)$ are integers and $\Gamma (x) = 1$ has integer roots. Given a positive intger $k$, find the smallest integer $m(k) > 1$ such that there exist $\Gamma \in F$ for which $\Gamma (x) = m(k)$ has exactly $k$ distinct integer roots.
2006 Irish Math Olympiad, 5
Find all functions $f : \mathbb{R} \mapsto \mathbb{R}$ such that $f(xy+f(x)) = xf(y) +f(x)$ for all $x,y \in \mathbb{R}$.