Found problems: 4776
1992 Polish MO Finals, 1
The functions $f_0, f_1, f_2, ...$ are defined on the reals by $f_0(x) = 8$ for all $x$, $f_{n+1}(x) = \sqrt{x^2 + 6f_n(x)}$. For all $n$ solve the equation $f_n(x) = 2x$.
2016 Indonesia TST, 4
We call a subset $B$ of natural numbers [i]loyal[/i] if there exists natural numbers $i\le j$ such that $B=\{i,i+1,\ldots,j\}$. Let $Q$ be the set of all [i]loyal[/i] sets. For every subset $A=\{a_1<a_2<\ldots<a_k\}$ of $\{1,2,\ldots,n\}$ we set
\[f(A)=\max_{1\le i \le k-1}{a_{i+1}-a_i}\qquad\text{and}\qquad g(A)=\max_{B\subseteq A, B\in Q} |B|.\] Furthermore, we define \[F(n)=\sum_{A\subseteq \{1,2,\ldots,n\}} f(A)\qquad\text{and}\qquad G(n)=\sum_{A\subseteq \{1,2,\ldots,n\}} g(A).\] Prove that there exists $m\in \mathbb N$ such that for each natural number $n>m$ we have $F(n)>G(n)$. (By $|A|$ we mean the number of elements of $A$, and if $|A|\le 1$, we define $f(A)$ to be zero).
[i]Proposed by Javad Abedi[/i]
2015 Romania Team Selection Tests, 3
If $k$ and $n$ are positive integers , and $k \leq n$ , let $M(n,k)$ denote the least common multiple of the numbers $n , n-1 , \ldots , n-k+1$.Let $f(n)$ be the largest positive integer $ k \leq n$ such that $M(n,1)<M(n,2)<\ldots <M(n,k)$ . Prove that :
[b](a)[/b] $f(n)<3\sqrt{n}$ for all positive integers $n$ .
[b](b)[/b] If $N$ is a positive integer , then $f(n) > N$ for all but finitely many positive integers $n$.
2025 USAJMO, 1
Let $\mathbb Z$ be the set of integers, and let $f\colon \mathbb Z \to \mathbb Z$ be a function. Prove that there are infinitely many integers $c$ such that the function $g\colon \mathbb Z \to \mathbb Z$ defined by $g(x) = f(x) + cx$ is not bijective.
[i]Note: [/i] A function $g\colon \mathbb Z \to \mathbb Z$ is bijective if for every integer $b$, there exists exactly one integer $a$ such that $g(a) = b$.
2009 AMC 12/AHSME, 24
For how many values of $ x$ in $ [0,\pi]$ is $ \sin^{\minus{}1}(\sin 6x)\equal{}\cos^{\minus{}1}(\cos x)$?
Note: The functions $ \sin^{\minus{}1}\equal{}\arcsin$ and $ \cos^{\minus{}1}\equal{}\arccos$ denote inverse trigonometric functions.
$ \textbf{(A)}\ 3\qquad
\textbf{(B)}\ 4\qquad
\textbf{(C)}\ 5\qquad
\textbf{(D)}\ 6\qquad
\textbf{(E)}\ 7$
1992 Vietnam Team Selection Test, 3
Let $ABC$ a triangle be given with $BC = a$, $CA = b$, $AB = c$ ($a \neq b \neq c \neq a$). In plane ($ABC$) take the points $A'$, $B'$, $C'$ such that:
[b]I.[/b] The pairs of points $A$ and $A'$, $B$ and $B'$, $C$ and $C'$ either all lie in one side either all lie in different sides under the lines $BC$, $CA$, $AB$ respectively;
[b]II.[/b] Triangles $A'BC$, $B'CA$, $C'AB$ are similar isosceles triangles.
Find the value of angle $A'BC$ as function of $a, b, c$ such that lengths $AA', BB', CC'$ are not sides of an triangle. (The word "triangle" must be understood in its ordinary meaning: its vertices are not collinear.)
2015 SG Originals, N6
Let $\mathbb{Z}_{>0}$ denote the set of positive integers. Consider a function $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$. For any $m, n \in \mathbb{Z}_{>0}$ we write $f^n(m) = \underbrace{f(f(\ldots f}_{n}(m)\ldots))$. Suppose that $f$ has the following two properties:
(i) if $m, n \in \mathbb{Z}_{>0}$, then $\frac{f^n(m) - m}{n} \in \mathbb{Z}_{>0}$;
(ii) The set $\mathbb{Z}_{>0} \setminus \{f(n) \mid n\in \mathbb{Z}_{>0}\}$ is finite.
Prove that the sequence $f(1) - 1, f(2) - 2, f(3) - 3, \ldots$ is periodic.
[i]Proposed by Ang Jie Jun, Singapore[/i]
2014 Romania National Olympiad, 1
For a ring $ A, $ and an element $ a $ of it, define $ s_a,d_a:A\longrightarrow A, s_a(x)=ax,d_a=xa.$
[b]a)[/b] Prove that if $ A $ is finite, then $ s_a $ is injective if and only if $ d_a $ is injective.
[b]b)[/b] Give example of a ring which has an element $ b $ for which $ s_b $ is injective and $ d_b $ is not, or, conversely, $ s_b $ is not injective, but $ d_b $ is.
1985 Traian Lălescu, 1.2
Find the first degree polynomial function $ f:\mathbb{R}\longrightarrow\mathbb{R} $ that satisfy the equation
$$ f(x-1)=-3x-5-f(2), $$
for all real numbers $ x. $
2013 Math Prize For Girls Problems, 13
Each of $n$ boys and $n$ girls chooses a random number from the set $\{ 1, 2, 3, 4, 5 \}$, uniformly and independently. Let $p_n$ be the probability that every boy chooses a different number than every girl. As $n$ approaches infinity, what value does $\sqrt[n]{p_n}$ approach?
2011 Northern Summer Camp Of Mathematics, 2
Find all functions $f: \mathbb N \cup \{0\} \to \mathbb N\cup \{0\}$ such that $f(1)>0$ and
\[f(m^2+3n^2)=(f(m))^2 + 3(f(n))^2 \quad \forall m,n \in \mathbb N\cup \{0\}.\]
2010 Today's Calculation Of Integral, 635
Suppose that a function $f(x)$ defined in $-1<x<1$ satisfies the following properties (i) , (ii), (iii).
(i) $f'(x)$ is continuous.
(ii) When $-1<x<0,\ f'(x)<0,\ f'(0)=0$, when $0<x<1,\ f'(x)>0$.
(iii) $f(0)=-1$
Let $F(x)=\int_0^x \sqrt{1+\{f'(t)\}^2}dt\ (-1<x<1)$. If $F(\sin \theta)=c\theta\ (c :\text{constant})$ holds for $-\frac{\pi}{2}<\theta <\frac{\pi}{2}$, then find $f(x)$.
[i]1975 Waseda University entrance exam/Science and Technology[/i]
2014 IFYM, Sozopol, 5
The real function $f$ is defined for $\forall$ $x\in \mathbb{R}$ and $f(0)=0$. Also $f(9+x)=f(9-x)$ and $f(x-10)=f(-x-10)$ for $\forall$ $x\in \mathbb{R}$. What’s the least number of zeros $f$ can have in the interval $[0;2014]$? Does this change, if $f$ is also continuous?
2012 China Team Selection Test, 2
Given two integers $m,n$ which are greater than $1$. $r,s$ are two given positive real numbers such that $r<s$. For all $a_{ij}\ge 0$ which are not all zeroes,find the maximal value of the expression
\[f=\frac{(\sum_{j=1}^{n}(\sum_{i=1}^{m}a_{ij}^s)^{\frac{r}{s}})^{\frac{1}{r}}}{(\sum_{i=1}^{m})\sum_{j=1}^{n}a_{ij}^r)^{\frac{s}{r}})^{\frac{1}{s}}}.\]
2001 Miklós Schweitzer, 7
Let $e_1,\ldots, e_n$ be semilines on the plane starting from a common point. Prove that if there is no $u\not\equiv 0$ harmonic function on the whole plane that vanishes on the set $e_1\cup \cdots \cup e_n$, then there exists a pair $i,j$ of indices such that no $u\not\equiv 0$ harmonic function on the whole plane exists that vanishes on $e_i\cup e_j$.
2005 AMC 12/AHSME, 24
Let $ P(x) \equal{} (x \minus{} 1)(x \minus{} 2)(x \minus{} 3)$. For how many polynomials $ Q(x)$ does there exist a polynomial $ R(x)$ of degree 3 such that $ P(Q(x)) \equal{} P(x) \cdot R(x)$?
$ \textbf{(A)}\ 19\qquad
\textbf{(B)}\ 22\qquad
\textbf{(C)}\ 24\qquad
\textbf{(D)}\ 27\qquad
\textbf{(E)}\ 32$
2001 Bundeswettbewerb Mathematik, 2
For a sequence $ a_i \in \mathbb{R}, i \in \{0, 1, 2, \ldots\}$ we have $ a_0 \equal{} 1$ and \[ a_{n\plus{}1} \equal{} a_n \plus{} \sqrt{a_{n\plus{}1} \plus{} a_n} \quad \forall n \in \mathbb{N}.\] Prove that this sequence is unique and find an explicit formula for this recursively defined sequence.
1993 French Mathematical Olympiad, Problem 3
Let $f$ be a function from $\mathbb Z$ to $\mathbb R$ which is bounded from above and satisfies $f(n)\le\frac12(f(n-1)+f(n+1))$ for all $n$. Show that $f$ is constant.
1995 North Macedonia National Olympiad, 5
Let $ a, b, c, d \in \mathbb {R}, $ $ b \neq0. $
Find the functions of the $ f: \mathbb{R} \to \mathbb{R} $ such that $ f (x + d \cdot f (y)) = ax + by + c, $ for all $ x, y \in \mathbb{R}. $
2016 Poland - Second Round, 3
Determine, whether exists function $f$, which assigns each integer $k$, nonnegative integer $f(k)$ and meets the conditions:
$f(0) > 0$,
for each integer $k$ minimal number of the form $f(k - l) + f(l)$, where $l \in \mathbb{Z}$, equals $f(k)$.
2022 BMT, 6
The degree-$6$ polynomial $f$ satisfies $f(7) - f(1) = 1, f(8) - f(2) = 16, f(9) - f(3) = 81, f(10) - f(4) = 256$ and $f(11) - f(5) = 625.$ Compute $f(15) - f(-3).$
2004 Uzbekistan National Olympiad, 3
Given a sequence {$a_n$} such that $a_1=2$ and for all positive integer $n\geq 2$ $a_{n+1}=\frac{a_n^4+9}{16a_n}$. Prove that $\frac {4}{5}<a_n<\frac {5}{4}$
1968 IMO, 5
Let $f$ be a real-valued function defined for all real numbers, such that for some $a>0$ we have \[ f(x+a)={1\over2}+\sqrt{f(x)-f(x)^2} \] for all $x$.
Prove that $f$ is periodic, and give an example of such a non-constant $f$ for $a=1$.
2023 Romania National Olympiad, 2
Determine functions $f : \mathbb{R} \rightarrow \mathbb{R},$ with property that
\[
f(f(x)) + y \cdot f(x) \le x + x \cdot f(f(y)),
\]
for every $x$ and $y$ are real numbers.
1989 IMO Longlists, 91
For $ \phi: \mathbb{N} \mapsto \mathbb{Z}$ let us define \[ M_{\phi} \equal{} \{f: \mathbb{N} \mapsto \mathbb{Z}, f(x) > f(\phi(x)), \forall x \in \mathbb{N} \}.\] Prove that if $ M_{\phi_1} \equal{} M_{\phi_2} \neq \emptyset,$ then $ \phi_1 \equal{} \phi_2.$ Does this property remain true if \[ M_{\phi} \equal{} \{f: \mathbb{N} \mapsto \mathbb{N}, f(x) > f(\phi(x)), \forall x \in \mathbb{N} \}?\]