This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2015 IMAR Test, 4

(a) Show that, if $I \subset R$ is a closed bounded interval, and $f : I \to R$ is a non-constant monic polynomial function such that $max_{x\in I}|f(x)|< 2$, then there exists a non-constant monic polynomial function $g : I \to R$ such that $max_{x\in I} |g(x)| < 1$. (b) Show that there exists a closed bounded interval $I \subset R$ such that $max_{x\in I}|f(x)| \ge 2$ for every non-constant monic polynomial function $f : I \to R$.

1999 Vietnam Team Selection Test, 2

Tags: geometry , function
Let a triangle $ABC$ inscribed in circle $\Gamma$ be given. Circle $\Theta$ lies in angle $Â$ of triangle and touches sides $AB, AC$ at $M_1, N_1$ and touches internally $\Gamma$ at $P_1$. The points $M_2, N_2, P_2$ and $M_3, N_3, P_3$ are defined similarly to angles $B$ and $C$ respectively. Show that $M_1N_1, M_2N_2$ and $M_3N_3$ intersect each other at their midpoints.

2008 Gheorghe Vranceanu, 1

Determine all functions $ f: \mathbb{R} \to \mathbb{R}$ satisfying the condition $ f(xy) \le xf(y)$ for all real numbers $ x$ and $ y$.

1998 National Olympiad First Round, 4

$ x,y,z\in \mathbb R$, find the minimal value of $ f\left(x,y,z\right) = 2x^{2} + 5y^{2} + 10z^{2} - 2xy - 4yz - 6zx + 3$. $\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 3 \qquad\textbf{(C)}\ -3 \qquad\textbf{(D)}\ 1 \qquad\textbf{(E)}\ \text{None}$

1977 AMC 12/AHSME, 22

Tags: function
If $f(x)$ is a real valued function of the real variable $x$, and $f(x)$ is not identically zero, and for all $a$ and $b$ \[f(a+b)+f(a-b)=2f(a)+2f(b),\] then for all $x$ and $y$ $\textbf{(A) }f(0)=1\qquad\textbf{(B) }f(-x)=-f(x)\qquad$ $\textbf{(C) }f(-x)=f(x)\qquad\textbf{(D) }f(x+y)=f(x)+f(y)\qquad$ $\textbf{(E) }\text{there is a positive real number }T\text{ such that }f(x+T)=f(x)$

2025 District Olympiad, P3

Determine all functions $f:\mathbb{C}\rightarrow\mathbb{C}$ such that $$|wf(z)+zf(w)|=2|zw|$$ for all $w,z\in\mathbb{C}$.

2002 Germany Team Selection Test, 1

Let $P$ denote the set of all ordered pairs $ \left(p,q\right)$ of nonnegative integers. Find all functions $f: P \rightarrow \mathbb{R}$ satisfying \[ f(p,q) \equal{} \begin{cases} 0 & \text{if} \; pq \equal{} 0, \\ 1 \plus{} \frac{1}{2} f(p+1,q-1) \plus{} \frac{1}{2} f(p-1,q+1) & \text{otherwise} \end{cases} \] Compare IMO shortlist problem 2001, algebra A1 for the three-variable case.

ICMC 6, 2

Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function such that $f'(x) > f(x)>0$ for all real numbers $x$. Show that $f(8) > 2022f(0)$. [i]Proposed by Ethan Tan[/i]

2002 Iran Team Selection Test, 9

$\pi(n)$ is the number of primes that are not bigger than $n$. For $n=2,3,4,6,8,33,\dots$ we have $\pi(n)|n$. Does exist infinitely many integers $n$ that $\pi(n)|n$?

2014 Cezar Ivănescu, 3

Tags: algebra , function
Let $f, g:\mathbb{N}\to\mathbb{N}$ be functions that satisfy the following equation: \[f(f(n))+g(f(n)) = n,\ \forall\ n\in\mathbb{N}\ .\] Prove that $g$ is the zero function on $\mathbb{N}$.

1997 Romania Team Selection Test, 3

Tags: algebra , function
Find all functions $f: \mathbb{R}\to [0;+\infty)$ such that: \[f(x^2+y^2)=f(x^2-y^2)+f(2xy)\] for all real numbers $x$ and $y$. [i]Laurentiu Panaitopol[/i]

2008 Harvard-MIT Mathematics Tournament, 6

Determine all real numbers $ a$ such that the inequality $ |x^2 \plus{} 2ax \plus{} 3a|\le2$ has exactly one solution in $ x$.

2001 AMC 12/AHSME, 9

Tags: function
Let $ f$ be a function satisfying $ f(xy) \equal{} f(x)/y$ for all positive real numbers $ x$ and $ y$. If $ f(500) \equal{} 3$, what is the value of $ f(600)$? $ \textbf{(A)} \ 1 \qquad \textbf{(B)} \ 2 \qquad \textbf{(C)} \ \displaystyle \frac {5}{2} \qquad \textbf{(D)} \ 3 \qquad \textbf{(E)} \ \displaystyle \frac {18}{5}$

2011 USA TSTST, 6

Let $a, b, c$ be positive real numbers in the interval $[0, 1]$ with $a+b, b+c, c+a \ge 1$. Prove that \[ 1 \le (1-a)^2 + (1-b)^2 + (1-c)^2 + \frac{2\sqrt{2} abc}{\sqrt{a^2+b^2+c^2}}. \]

2014 Contests, 4

(a) Let $a,x,y$ be positive integers. Prove: if $x\ne y$, the also \[ax+\gcd(a,x)+\text{lcm}(a,x)\ne ay+\gcd(a,y)+\text{lcm}(a,y).\] (b) Show that there are no two positive integers $a$ and $b$ such that \[ab+\gcd(a,b)+\text{lcm}(a,b)=2014.\]

STEMS 2024 Math Cat B, P5

Tags: function , algebra
Find the sum of all primes $p < 50$, for which there exists a function $f \colon \{0, \ldots , p -1\} \rightarrow \{0, \ldots , p -1\}$ such that $p \mid f(f(x)) - x^2$.

1984 IMO Longlists, 19

Let $ABC$ be an isosceles triangle with right angle at point $A$. Find the minimum of the function $F$ given by \[F(M) = BM +CM-\sqrt{3}AM\]

2012 Kyoto University Entry Examination, 3

When real numbers $x,\ y$ moves in the constraint with $x^2+xy+y^2=6.$ Find the range of $x^2y+xy^2-x^2-2xy-y^2+x+y.$ 30 points

2020 Israel Olympic Revenge, P1

Find all functions $f:\mathbb{R}\to \mathbb{R}$ such that for all $x,y\in \mathbb{R}$ one has \[f(f(x)+y)=f(x+f(y))\] and in addition the set $f^{-1}(a)=\{b\in \mathbb{R}\mid f(b)=a\}$ is a finite set for all $a\in \mathbb{R}$.

2010 Albania Team Selection Test, 4

With $\sigma (n)$ we denote the sum of natural divisors of the natural number $n$. Prove that, if $n$ is the product of different prime numbers of the form $2^k-1$ for $k \in \mathbb{N}$($Mersenne's$ prime numbers) , than $\sigma (n)=2^m$, for some $m \in \mathbb{N}$. Is the inverse statement true?

2007 India National Olympiad, 1

In a triangle $ ABC$ right-angled at $ C$ , the median through $ B$ bisects the angle between $ BA$ and the bisector of $ \angle B$. Prove that \[ \frac{5}{2} < \frac{AB}{BC} < 3\]

2006 All-Russian Olympiad, 1

Prove that $\sin\sqrt{x}<\sqrt{\sin x}$ for every real $x$ such that $0<x<\frac{\pi}{2}$.

2002 Federal Competition For Advanced Students, Part 2, 3

Let $H$ be the orthocenter of an acute-angled triangle $ABC$. Show that the triangles $ABH,BCH$ and $CAH$ have the same perimeter if and only if the triangle $ABC$ is equilateral.

2008 iTest Tournament of Champions, 3

Tags: function , ratio
Let $\phi = \tfrac{1+\sqrt 5}2$ be the positive root of $x^2=x+1$. Define a function $f:\mathbb N\to\mathbb N$ by \begin{align*} f(0) &= 1\\ f(2x) &= \lfloor\phi f(x)\rfloor\\ f(2x+1) &= f(2x) + f(x). \end{align*} Find the remainder when $f(2007)$ is divided by $2008$.

2012 Purple Comet Problems, 29

Let $A=\{1, 3, 5, 7, 9\}$ and $B=\{2, 4, 6, 8, 10\}$. Let $f$ be a randomly chosen function from the set $A\cup B$ into itself. There are relatively prime positive integers $m$ and $n$ such that $\frac{m}{n}$ is the probablity that $f$ is a one-to-one function on $A\cup B$ given that it maps $A$ one-to-one into $A\cup B$ and it maps $B$ one-to-one into $A\cup B$. Find $m+n$.