Found problems: 4776
2019 Iran MO (3rd Round), 3
Let $a,b,c$ be non-zero distinct real numbers so that there exist functions $f,g:\mathbb{R}^{+} \to \mathbb{R}$ so that:
$af(xy)+bf(\frac{x}{y})=cf(x)+g(y)$
For all positive real $x$ and large enough $y$.
Prove that there exists a function $h:\mathbb{R}^{+} \to \mathbb{R}$ so that:
$f(xy)+f(\frac{x}{y})=2f(x)+h(y)$
For all positive real $x$ and large enough $y$.
2005 District Olympiad, 4
Let $n\geq 3$ be an integer. Find the number of functions $f:\{1,2,\ldots,n\}\to\{1,2,\ldots,n\}$ such that
\[ f(f(k)) = f^3(k) - 6f^2(k) + 12f(k) - 6 , \ \textrm{ for all } k \geq 1 . \]
2022 Kazakhstan National Olympiad, 2
We define the function $Z(A)$ where we write the digits of $A$ in base $10$ form in reverse. (For example: $Z(521)=125$). Call a number $A$ $good$ if the first and last digits of $A$ are different, none of it's digits are $0$ and the equality: $$Z(A^2)=(Z(A))^2$$ happens. Find all such good numbers greater than $10^6$.\\
2012 Balkan MO, 4
Let $\mathbb{Z}^+$ be the set of positive integers. Find all functions $f:\mathbb{Z}^+ \rightarrow\mathbb{Z}^+$ such that the following conditions both hold:
(i) $f(n!)=f(n)!$ for every positive integer $n$,
(ii) $m-n$ divides $f(m)-f(n)$ whenever $m$ and $n$ are different positive integers.
2002 Federal Competition For Advanced Students, Part 1, 3
Let $f(x)=\frac{9^x}{9^x+3}$. Compute $\sum_{k} f \biggl( \frac{k}{2002} \biggr)$, where $k$ goes over all integers $k$ between $0$ and $2002$ which are coprime to $2002$.
2011 AMC 12/AHSME, 25
Triangle $ABC$ has $\angle BAC=60^\circ$, $\angle CBA \le 90^\circ$, $BC=1$, and $AC \ge AB$. Let $H$, $I$, and $O$ be the orthocenter, incenter, and circumcenter of $\triangle ABC$, respectively. Assume that the area of the pentagon $BCOIH$ is the maximum possible. What is $\angle CBA$?
$\textbf{(A)}\ 60 ^\circ \qquad
\textbf{(B)}\ 72 ^\circ\qquad
\textbf{(C)}\ 75 ^\circ \qquad
\textbf{(D)}\ 80 ^\circ\qquad
\textbf{(E)}\ 90 ^\circ$
2020 Olympic Revenge, 2
For a positive integer $n$, we say an $n$-[i]shuffling[/i] is a bijection $\sigma: \{1,2, \dots , n\} \rightarrow \{1,2, \dots , n\}$ such that there exist exactly two elements $i$ of $\{1,2, \dots , n\}$ such that $\sigma(i) \neq i$.
Fix some three pairwise distinct $n$-shufflings $\sigma_1,\sigma_2,\sigma_3$. Let $q$ be any prime, and let $\mathbb{F}_q$ be the integers modulo $q$. Consider all functions $f:(\mathbb{F}_q^n)^n\to\mathbb{F}_q$ that satisfy, for all integers $i$ with $1 \leq i \leq n$ and all $x_1,\ldots x_{i-1},x_{i+1}, \dots ,x_n, y, z\in\mathbb{F}_q^n$, \[f(x_1, \ldots ,x_{i-1}, y, x_{i+1}, \ldots , x_n) +f(x_1, \ldots ,x_{i-1}, z, x_{i+1}, \ldots , x_n) = f(x_1, \ldots ,x_{i-1}, y+z, x_{i+1}, \ldots , x_n), \] and that satisfy, for all $x_1,\ldots,x_n\in\mathbb{F}_q^n$ and all $\sigma\in\{\sigma_1,\sigma_2,\sigma_3\}$, \[f(x_1,\ldots,x_n)=-f(x_{\sigma(1)},\ldots,x_{\sigma(n)}).\]
For a given tuple $(x_1,\ldots,x_n)\in(\mathbb{F}_q^n)^n$, let $g(x_1,\ldots,x_n)$ be the number of different values of $f(x_1,\ldots,x_n)$ over all possible functions $f$ satisfying the above conditions.
Pick $(x_1,\ldots,x_n)\in(\mathbb{F}_q^n)^n$ uniformly at random, and let $\varepsilon(q,\sigma_1,\sigma_2,\sigma_3)$ be the expected value of $g(x_1,\ldots,x_n)$. Finally, let \[\kappa(\sigma_1,\sigma_2,\sigma_3)=-\lim_{q \to \infty}\log_q\left(-\ln\left(\frac{\varepsilon(q,\sigma_1,\sigma_2,\sigma_3)-1}{q-1}\right)\right).\]
Pick three pairwise distinct $n$-shufflings $\sigma_1,\sigma_2,\sigma_3$ uniformly at random from the set of all $n$-shufflings. Let $\pi(n)$ denote the expected value of $\kappa(\sigma_1,\sigma_2,\sigma_3)$. Suppose that $p(x)$ and $q(x)$ are polynomials with real coefficients such that $q(-3) \neq 0$ and such that $\pi(n)=\frac{p(n)}{q(n)}$ for infinitely many positive integers $n$. Compute $\frac{p\left(-3\right)}{q\left(-3\right)}$.
2007 Bulgarian Autumn Math Competition, Problem 9.1
We're given the functions $f(x)=|x-1|-|x-2|$ and $g(x)=|x-3|$.
a) Draw the graph of the function $f(x)$.
b) Determine the area of the section enclosed by the functions $f(x)$ and $g(x)$.
2014 Harvard-MIT Mathematics Tournament, 9
Given $a$, $b$, and $c$ are complex numbers satisfying
\[ a^2+ab+b^2=1+i \]
\[ b^2+bc+c^2=-2 \]
\[ c^2+ca+a^2=1, \]
compute $(ab+bc+ca)^2$. (Here, $i=\sqrt{-1}$)
2010 ELMO Shortlist, 1
Determine all strictly increasing functions $f: \mathbb{N}\to\mathbb{N}$ satisfying $nf(f(n))=f(n)^2$ for all positive integers $n$.
[i]Carl Lian and Brian Hamrick.[/i]
2012 National Olympiad First Round, 7
How many $f:\mathbb{R} \rightarrow \mathbb{R}$ are there satisfying $f(x)f(y)f(z)=12f(xyz)-16xyz$ for every real $x,y,z$?
$ \textbf{(A)}\ 3 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 1 \qquad \textbf{(D)}\ 0 \qquad \textbf{(E)}\ \text{None}$
2023 Myanmar IMO Training, 5
For a real number $x$, let $\lfloor x\rfloor$ stand for the largest integer that is less than or equal to $x$. Prove that
\[ \left\lfloor{(n-1)!\over n(n+1)}\right\rfloor \]
is even for every positive integer $n$.
2009 Korea National Olympiad, 1
Let $ A = \{ 1, 2, 3, \cdots , 12 \} $. Find the number of one-to-one function $ f :A \to A $ satisfying following condition: for all $ i \in A $, $ f(i)-i $ is not a multiple of $ 3 $.
2022 District Olympiad, P1
Let $f:\mathbb{N}^*\rightarrow \mathbb{N}^*$ be a function such that $\frac{x^3+3x^2f(y)}{x+f(y)}+\frac{y^3+3y^2f(x)}{y+f(x)}=\frac{(x+y)^3}{f(x+y)},~(\forall)x,y\in\mathbb{N}^*.$
$a)$ Prove that $f(1)=1.$
$b)$ Find function $f.$
2007 Today's Calculation Of Integral, 251
Evaluate $ \int_0^{n\pi} e^x\sin ^ 4 x\ dx\ (n\equal{}1,\ 2,\ \cdots).$
PEN P Problems, 21
Let $A$ be the set of positive integers of the form $a^2 +2b^2$, where $a$ and $b$ are integers and $b \neq 0$. Show that if $p$ is a prime number and $p^2 \in A$, then $p \in A$.
2022 District Olympiad, P4
Let $I\subseteq \mathbb{R}$ be an open interval and $f:I\to\mathbb{R}$ a strictly monotonous function. Prove that for all $c\in I$ there exist $a,b\in I$ such that $c\in (a,b)$ and \[\int_a^bf(x) \ dx=f(c)\cdot (b-a).\]
2005 Brazil Undergrad MO, 5
Prove that
\[ \sum_{n=1}^\infty {1\over n^n} = \int_0^1 x^{-x}\,dx. \]
2011 ISI B.Math Entrance Exam, 6
Let $f(x)=e^{-x}\ \forall\ x\geq 0$ and let $g$ be a function defined as for every integer $k \ge 0$, a straight line joining $(k,f(k))$ and $(k+1,f(k+1))$ . Find the area between the graphs of $f$ and $g$.
EGMO 2017, 2
Find the smallest positive integer $k$ for which there exists a colouring of the positive integers $\mathbb{Z}_{>0}$ with $k$ colours and a function $f:\mathbb{Z}_{>0}\to \mathbb{Z}_{>0}$ with the following two properties:
$(i)$ For all positive integers $m,n$ of the same colour, $f(m+n)=f(m)+f(n).$
$(ii)$ There are positive integers $m,n$ such that $f(m+n)\ne f(m)+f(n).$
[i]In a colouring of $\mathbb{Z}_{>0}$ with $k$ colours, every integer is coloured in exactly one of the $k$ colours. In both $(i)$ and $(ii)$ the positive integers $m,n$ are not necessarily distinct.[/i]
1999 Tuymaada Olympiad, 2
Can the graphs of a polynomial of degree 20 and the function $\displaystyle y={1\over x^{40}}$ have exactly 30 points of intersection?
[i]Proposed by K. Kokhas[/i]
2019 Canadian Mathematical Olympiad Qualification, 1
A function $f$ is called injective if when $f(n) = f(m)$, then $n = m$.
Suppose that $f$ is injective and $\frac{1}{f(n)}+\frac{1}{f(m)}=\frac{4}{f(n) + f(m)}$. Prove $m = n$
2000 Iran MO (3rd Round), 3
Suppose $f : \mathbb{N} \longrightarrow \mathbb{N}$ is a function that satisfies $f(1) = 1$ and
$f(n + 1) =\{\begin{array}{cc} f(n)+2&\mbox{if}\ n=f(f(n)-n+1),\\f(n)+1& \mbox{Otherwise}\end {array}$
$(a)$ Prove that $f(f(n)-n+1)$ is either $n$ or $n+1$.
$(b)$ Determine$f$.
2011 China National Olympiad, 1
Let $a_1,a_2,\ldots,a_n$ are real numbers, prove that;
\[\sum_{i=1}^na_i^2-\sum_{i=1}^n a_i a_{i+1} \le \left\lfloor \frac{n}{2}\right\rfloor(M-m)^2.\]
where $a_{n+1}=a_1,M=\max_{1\le i\le n} a_i,m=\min_{1\le i\le n} a_i$.
2020 Jozsef Wildt International Math Competition, W43
Let $f_1,f_2$ be nonnegative and concave functions. Then prove that
$$(f_1f_2)^{\frac{2^n-1}{n\cdot2^n}}\left(\frac{\displaystyle\prod_{k=1}^n\left(\sqrt[2^k]{f_1}+\sqrt[2^k]{f_2}\right)}{f_1+f_2}\right)^{\frac1n}$$
is concave.
[i]Proposed by Mihály Bencze and Marius Drăgan[/i]