This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2023 4th Memorial "Aleksandar Blazhevski-Cane", P6

Denote by $\mathbb{N}$ the set of positive integers. Find all functions $f:\mathbb{N} \rightarrow \mathbb{N}$ such that: [b]•[/b] For all positive integers $a> 2023^{2023}$ it holds that $f(a) \leq a$. [b]•[/b] $\frac{a^2f(b)+b^2f(a)}{f(a)+f(b)}$ is a positive integer for all $a,b \in \mathbb{N}$. [i]Proposed by Nikola Velov[/i]

2022 SG Originals, Q3

Find all functions $f:\mathbb{Z}^+\rightarrow \mathbb{Z}^+$ satisfying $$m!!+n!!\mid f(m)!!+f(n)!!$$for each $m,n\in \mathbb{Z}^+$, where $n!!=(n!)!$ for all $n\in \mathbb{Z}^+$. [i]Proposed by DVDthe1st[/i]

2011 Iran MO (3rd Round), 2

Let $n$ and $k$ be two natural numbers such that $k$ is even and for each prime $p$ if $p|n$ then $p-1|k$. let $\{a_1,....,a_{\phi(n)}\}$ be all the numbers coprime to $n$. What's the remainder of the number $a_1^k+.....+a_{\phi(n)}^k$ when it's divided by $n$? [i]proposed by Yahya Motevassel[/i]

2008 ISI B.Stat Entrance Exam, 6

Evaluate: $\lim_{n\to\infty} \frac{1}{2n} \ln\binom{2n}{n}$

2004 AMC 10, 4

What is the value of $ x$ if $ |x \minus{} 1| \equal{} |x \minus{} 2|$? $ \textbf{(A)}\ \minus{}\!\frac {1}{2}\qquad \textbf{(B)}\ \frac {1}{2}\qquad \textbf{(C)}\ 1\qquad \textbf{(D)}\ \frac {3}{2}\qquad \textbf{(E)}\ 2$

2014 AIME Problems, 5

Real numbers $r$ and $s$ are roots of $p(x)=x^3+ax+b$, and $r+4$ and $s-3$ are roots of $q(x)=x^3+ax+b+240$. Find the sum of all possible values of $|b|$.

1961 Putnam, A2

For a real-valued function $f(x,y)$ of two positive real variables $x$ and $y$, define $f$ to be [i]linearly bounded[/i] if and only if there exists a positive number $K$ such that $|f(x,y)| < K(x+y)$ for all positive $x$ and $y.$ Find necessary and sufficient conditions on the real numbers $\alpha$ and $\beta$ such that $x^{\alpha}y^{\beta}$ is linearly bounded.

2021 CIIM, 4

Let $\mathbb{Z}^{+}$ be the set of positive integers. [b]a)[/b] Prove that there is only one function $f:\mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$, strictly increasing, such that $f(f(n))=2n+1$ for every $n\in \mathbb{Z}^{+}$. [b]b)[/b] For the function in [b]a[/b]. Prove that for every $n\in \mathbb{Z}^{+}$ $\frac{4n+1}{3}\leq f(n)\leq \frac{3n+1}{2}$ [b]c) [/b] Prove that in each inequality side of [b]b[/b] the equality can reach by infinite positive integers $n$.

2010 Turkey Team Selection Test, 3

Let $\Lambda$ be the set of points in the plane whose coordinates are integers and let $F$ be the collection of all functions from $\Lambda$ to $\{1,-1\}.$ We call a function $f$ in $F$ [i]perfect[/i] if every function $g$ in $F$ that differs from $f$ at finitely many points satisfies the condition \[ \sum_{0<d(P,Q)<2010} \frac{f(P)f(Q)-g(P)g(Q)}{d(P,Q)} \geq 0 \] where $d(P,Q)$ denotes the distance between $P$ and $Q.$ Show that there exist infinitely many [i]perfect[/i] functions that are not translates of each other.

2016 Federal Competition For Advanced Students, P2, 1

Let $\alpha\in\mathbb{Q}^+$. Determine all functions $f:\mathbb{Q}^+\to\mathbb{Q}^+$ that for all $x,y\in\mathbb{Q}^+$ satisfy the equation \[ f\left(\frac{x}{y}+y\right) ~=~ \frac{f(x)}{f(y)}+f(y)+\alpha x.\] Here $\mathbb{Q}^+$ denote the set of positive rational numbers. (Proposed by Walther Janous)

1995 APMO, 5

Find the minimum positive integer $k$ such that there exists a function $f$ from the set $\Bbb{Z}$ of all integers to $\{1, 2, \ldots k\}$ with the property that $f(x) \neq f(y)$ whenever $|x-y| \in \{5, 7, 12\}$.

2012 India IMO Training Camp, 3

Tags: algebra , function
Let $f:\mathbb{R}\longrightarrow \mathbb{R}$ be a function such that $f(x+y+xy)=f(x)+f(y)+f(xy)$ for all $x, y\in\mathbb{R}$. Prove that $f$ satisfies $f(x+y)=f(x)+f(y)$ for all $x, y\in\mathbb{R}$.

2019 Costa Rica - Final Round, 4

Let $g: R \to R$ be a linear function such that $g (1) = 0$. If $f: R \to R$ is a quadratic function such what $g (x^2) = f (x)$ and $f (x + 1) - f (x - 1) = x$ for all $x \in R$. Determine the value of $f (2019)$.

2015 Taiwan TST Round 2, 2

Tags: algebra , function
Given a real number $t\neq -1$. Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that \[(t+1)f(1+xy)-f(x+y)=f(x+1)f(y+1)\] for all $x,y\in\mathbb{R}$.

2022 CIIM, 1

Given the function $f(x) = x^2$, the sector of $f$ from $a$ to $b$ is defined as the limited region between the graph of $y = f(x)$ and the straight line segment that joins the points $(a, f(a))$ and $(b, f(b))$. Define the increasing sequence $x_0$, $x_1, \cdots$ with $x_0 = 0$ and $x_1 = 1$, such that the area of the sector of $f$ from $x_n$ to $x_{n+1}$ is constant for $n \geq 0$. Determine the value of $x_n$ in function of $n$.

2014 Thailand TSTST, 1

Tags: function , algebra
Find all functions $f: {\mathbb{R^\plus{}}}\to{\mathbb{R^\plus{}}}$ such that \[ f(1\plus{}xf(y))\equal{}yf(x\plus{}y)\] for all $x,y\in\mathbb{R^\plus{}}$.

2011 USAMTS Problems, 3

Find all integers $b$ such that there exists a positive real number $x$ with \[ \dfrac {1}{b} = \dfrac {1}{\lfloor 2x \rfloor} + \dfrac {1}{\lfloor 5x \rfloor} \] Here, $\lfloor y \rfloor$ denotes the greatest integer that is less than or equal to $y$.

2005 ITAMO, 2

Let $h$ be a positive integer. The sequence $a_n$ is defined by $a_0 = 1$ and \[a_{n+1} = \{\begin{array}{c} \frac{a_n}{2} \text{ if } a_n \text{ is even }\\\\a_n+h \text{ otherwise }.\end{array}\] For example, $h = 27$ yields $a_1=28, a_2 = 14, a_3 = 7, a_4 = 34$ etc. For which $h$ is there an $n > 0$ with $a_n = 1$?

1993 China National Olympiad, 6

Let $f: (0,+\infty)\rightarrow (0,+\infty)$ be a function satisfying the following condition: for arbitrary positive real numbers $x$ and $y$, we have $f(xy)\le f(x)f(y)$. Show that for arbitrary positive real number $x$ and natural number $n$, inequality $f(x^n)\le f(x)f(x^2)^{\dfrac{1}{2}}\dots f(x^n)^{\dfrac{1}{n}}$ holds.

1984 National High School Mathematics League, 8

Lengths of five edges of a tetrahedron are $1$, while the last one is $x$. Its volume is $F(x)$. On its domain of definition, we have $\text{(A)}$ $F(x)$ is an increasing function, it has no maximum value. $\text{(B)}$ $F(x)$ is an increasing function, it has maximum value. $\text{(C)}$ $F(x)$ is not an increasing function, it has no maximum value. $\text{(D)}$ $F(x)$ is an increasing function, it has maximum value.

2013 ELMO Shortlist, 8

Let $a, b, c$ be positive reals with $a^{2014}+b^{2014}+c^{2014}+abc=4$. Prove that \[ \frac{a^{2013}+b^{2013}-c}{c^{2013}} + \frac{b^{2013}+c^{2013}-a}{a^{2013}} + \frac{c^{2013}+a^{2013}-b}{b^{2013}} \ge a^{2012}+b^{2012}+c^{2012}. \][i]Proposed by David Stoner[/i]

1990 IMO, 1

Let $ {\mathbb Q}^ \plus{}$ be the set of positive rational numbers. Construct a function $ f : {\mathbb Q}^ \plus{} \rightarrow {\mathbb Q}^ \plus{}$ such that \[ f(xf(y)) \equal{} \frac {f(x)}{y} \] for all $ x$, $ y$ in $ {\mathbb Q}^ \plus{}$.

2014 Miklós Schweitzer, 8

Let $n\ge 1$ be a fixed integer. Calculate the distance $\inf_{p,f}\, \max_{0\le x\le 1} |f(x)-p(x)|$ , where $p$ runs over polynomials of degree less than $n$ with real coefficients and $f$ runs over functions $f(x)= \sum_{k=n}^{\infty} c_k x^k$ defined on the closed interval $[0,1]$ , where $c_k \ge 0$ and $\sum_{k=n}^{\infty} c_k=1$.

1977 IMO Longlists, 31

Tags: function , algebra
Let $f$ be a function defined on the set of pairs of nonzero rational numbers whose values are positive real numbers. Suppose that $f$ satisfies the following conditions: [b](1)[/b] $f(ab,c)=f(a,c)f(b,c),\ f(c,ab)=f(c,a)f(c,b);$ [b](2)[/b] $f(a,1-a)=1$ Prove that $f(a,a)=f(a,-a)=1,f(a,b)f(b,a)=1$.

2000 AMC 12/AHSME, 8

Figures $ 0$, $ 1$, $ 2$, and $ 3$ consist of $ 1$, $ 5$, $ 13$, and $ 25$ nonoverlapping squares, respectively. If the pattern were continued, how many nonoverlapping squares would there be in figure $ 100$? [asy] unitsize(8); draw((0,0)--(1,0)--(1,1)--(0,1)--cycle); draw((9,0)--(10,0)--(10,3)--(9,3)--cycle); draw((8,1)--(11,1)--(11,2)--(8,2)--cycle); draw((19,0)--(20,0)--(20,5)--(19,5)--cycle); draw((18,1)--(21,1)--(21,4)--(18,4)--cycle); draw((17,2)--(22,2)--(22,3)--(17,3)--cycle); draw((32,0)--(33,0)--(33,7)--(32,7)--cycle); draw((29,3)--(36,3)--(36,4)--(29,4)--cycle); draw((31,1)--(34,1)--(34,6)--(31,6)--cycle); draw((30,2)--(35,2)--(35,5)--(30,5)--cycle); label("Figure",(0.5,-1),S); label("$0$",(0.5,-2.5),S); label("Figure",(9.5,-1),S); label("$1$",(9.5,-2.5),S); label("Figure",(19.5,-1),S); label("$2$",(19.5,-2.5),S); label("Figure",(32.5,-1),S); label("$3$",(32.5,-2.5),S);[/asy]$ \textbf{(A)}\ 10401 \qquad \textbf{(B)}\ 19801 \qquad \textbf{(C)}\ 20201 \qquad \textbf{(D)}\ 39801 \qquad \textbf{(E)}\ 40801$