This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2017 Abels Math Contest (Norwegian MO) Final, 1b

Find all functions $f : R \to R$ which satisfy $f(x)f(y) = f(x + y) + xy$ for all $x, y \in R$.

2013 Brazil Team Selection Test, 4

Find all functions $f:\mathbb{R} \rightarrow \mathbb{R}$ that satisfy the conditions \[f(1+xy)-f(x+y)=f(x)f(y) \quad \text{for all } x,y \in \mathbb{R},\] and $f(-1) \neq 0$.

2006 QEDMO 3rd, 3

Tags: function , algebra , vector
Find all functions $ f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all real numbers $ x,y$: $ x f(x)\minus{}yf(y)\equal{}(x\minus{}y)f(x\plus{}y)$.

2015 Taiwan TST Round 3, 1

Let $\mathbb{Q}^+$ be the set of all positive rational numbers. Find all functions $f:\mathbb{Q}^+\rightarrow \mathbb{Q}^+$ satisfying $f(1)=1$ and \[ f(x+n)=f(x)+nf(\frac{1}{x}) \forall n\in\mathbb{N},x\in\mathbb{Q}^+\]

2010 Contests, 4

Let $ x$, $ y$, $ z \in\mathbb{R}^+$ satisfying $ xyz = 1$. Prove that \[ \frac {(x + y - 1)^2}{z} + \frac {(y + z - 1)^2}{x} + \frac {(z + x - 1)^2}{y}\geqslant x + y + z\mbox{.}\]

2018 China Team Selection Test, 2

An integer partition, is a way of writing n as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition. [quote]For example, 4 can be partitioned in five distinct ways: 4 3 + 1 2 + 2 2 + 1 + 1 1 + 1 + 1 + 1[/quote] The number of partitions of n is given by the partition function $p\left ( n \right )$. So $p\left ( 4 \right ) = 5$ . Determine all the positive integers so that $p\left ( n \right )+p\left ( n+4 \right )=p\left ( n+2 \right )+p\left ( n+3 \right )$.

2016 CHMMC (Fall), 14

Tags: function , geometry
For a unit circle $O$, arrange points $A,B,C,D$ and $E$ in that order evenly along $O$'s circumference. For each of those points, draw the arc centered at that point inside O from the point to its left to the point to its right. Denote the outermost intersections of these arcs as $A', B', C', D'$ and $E'$, where the prime of any point is opposite the point. The length of $AC'$ can be written as an expression $f(x)$, where $f$ is a trigonometric function. Find this expression.

2016 Indonesia TST, 4

We call a subset $B$ of natural numbers [i]loyal[/i] if there exists natural numbers $i\le j$ such that $B=\{i,i+1,\ldots,j\}$. Let $Q$ be the set of all [i]loyal[/i] sets. For every subset $A=\{a_1<a_2<\ldots<a_k\}$ of $\{1,2,\ldots,n\}$ we set \[f(A)=\max_{1\le i \le k-1}{a_{i+1}-a_i}\qquad\text{and}\qquad g(A)=\max_{B\subseteq A, B\in Q} |B|.\] Furthermore, we define \[F(n)=\sum_{A\subseteq \{1,2,\ldots,n\}} f(A)\qquad\text{and}\qquad G(n)=\sum_{A\subseteq \{1,2,\ldots,n\}} g(A).\] Prove that there exists $m\in \mathbb N$ such that for each natural number $n>m$ we have $F(n)>G(n)$. (By $|A|$ we mean the number of elements of $A$, and if $|A|\le 1$, we define $f(A)$ to be zero). [i]Proposed by Javad Abedi[/i]

2010 Romania National Olympiad, 4

Let $f:[-1,1]\to\mathbb{R}$ be a continuous function having finite derivative at $0$, and \[I(h)=\int^h_{-h}f(x)\text{ d}x,\ h\in [0,1].\] Prove that a) there exists $M>0$ such that $|I(h)-2f(0)h|\le Mh^2$, for any $h\in [0,1]$. b) the sequence $(a_n)_{n\ge 1}$, defined by $a_n=\sum_{k=1}^n\sqrt{k}|I(1/k)|$, is convergent if and only if $f(0)=0$. [i]Calin Popescu[/i]

2011 Kosovo National Mathematical Olympiad, 2

Is it possible that by using the following transformations: \[ f(x) \mapsto x^2 \cdot f \left(\frac{1}{x}+1 \right) \ \ \ \text{or} \ \ \ f(x) \mapsto (x-1)^2 \cdot f\left(\frac{1}{x-1} \right)\] the function $f(x)=x^2+5x+4$ is sent to the function $g(x)=x^2+10x+8$ ?

2016 Bulgaria EGMO TST, 3

Prove that there is no function $f:\mathbb{R}^{+} \to \mathbb{R}^{+}$ such that $f(x)^2 \geq f(x+y)(f(x)+y)$ for all $x,y \in \mathbb{R}^{+}$.

1991 Polish MO Finals, 1

On the Cartesian plane consider the set $V$ of all vectors with integer coordinates. Determine all functions $f : V \rightarrow \mathbb{R}$ satisfying the conditions: (i) $f(v) = 1$ for each of the four vectors $v \in V$ of unit length. (ii) $f(v+w) = f(v)+f(w)$ for every two perpendicular vectors $v, w \in V$ (Zero vector is considered to be perpendicular to every vector).

2018 Caucasus Mathematical Olympiad, 4

Tags: function , algebra
Morteza places a function $[0,1]\to [0,1]$ (that is a function with domain [0,1] and values from [0,1]) in each cell of an $n \times n$ board. Pavel wants to place a function $[0,1]\to [0,1]$ to the left of each row and below each column (i.e. to place $2n$ functions in total) so that the following condition holds for any cell in this board: If $h$ is the function in this cell, $f$ is the function below its column, and $g$ is the function to the left of its row, then $h(x) = f(g(x))$ for all $x \in [0, 1]$. Prove that Pavel can always fulfil his plan.

2007 Today's Calculation Of Integral, 210

Evaluate $\int_{1}^{\pi}\left(x^{3}\ln x-\frac{6}{x}\right)\sin x\ dx$.

2000 South africa National Olympiad, 4

$ABCD$ is a square of side 1. $P$ and $Q$ are points on $AB$ and $BC$ such that $\widehat{PDQ} = 45^{\circ}$. Find the perimeter of $\Delta PBQ$.

1999 IMC, 4

Find all strictly monotonic functions $f: \mathbb{R}^+\rightarrow\mathbb{R}^+$ for which $f\left(\frac{x^2}{f(x)}\right)=x$ for all $x$.

2013 IMO Shortlist, A3

Let $\mathbb Q_{>0}$ be the set of all positive rational numbers. Let $f:\mathbb Q_{>0}\to\mathbb R$ be a function satisfying the following three conditions: (i) for all $x,y\in\mathbb Q_{>0}$, we have $f(x)f(y)\geq f(xy)$; (ii) for all $x,y\in\mathbb Q_{>0}$, we have $f(x+y)\geq f(x)+f(y)$; (iii) there exists a rational number $a>1$ such that $f(a)=a$. Prove that $f(x)=x$ for all $x\in\mathbb Q_{>0}$. [i]Proposed by Bulgaria[/i]

2012 AIME Problems, 11

Let $f_1(x) = \frac{2}{3}-\frac{3}{3x+1}$, and for $n \ge 2$, define $f_n(x) = f_1(f_{n-1} (x))$. The value of x that satisfies $f_{1001}(x) = x - 3$ can be expressed in the form $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

2004 India IMO Training Camp, 1

Let $x_1, x_2 , x_3, .... x_n$ be $n$ real numbers such that $0 < x_j < \frac{1}{2}$. Prove that \[ \frac{ \prod\limits_{j=1}^{n} x_j } { \left( \sum\limits_{j=1}^{n} x_j \right)^n} \leq \frac{ \prod\limits_{j=1}^{n} (1-x_j) } { \left( \sum\limits_{j=1}^{n} (1 - x_j) \right)^n} \]

2010 Canadian Mathematical Olympiad Qualification Repechage, 7

Tags: function , algebra
If $(a,~b,~c)$ is a triple of real numbers, de fine [list] [*] $g(a,~b,~c)=(a+b,~b+c,~a+c)$, and [*] $g^n(a,~b,~c)=g(g^{n-1}(a,~b,~c))$ for $n\ge 2$[/list] Suppose that there exists a positive integer $n$ so that $g^n(a,~b,~c)=(a,~b,~c)$ for some $(a,~b,~c)\neq (0,~0,~0)$. Prove that $g^6(a,~b,~c)=(a,~b,~c)$

2011 Iran MO (3rd Round), 5

Suppose that $n$ is a natural number. we call the sequence $(x_1,y_1,z_1,t_1),(x_2,y_2,z_2,t_2),.....,(x_s,y_s,z_s,t_s)$ of $\mathbb Z^4$ [b]good[/b] if it satisfies these three conditions: [b]i)[/b] $x_1=y_1=z_1=t_1=0$. [b]ii)[/b] the sequences $x_i,y_i,z_i,t_i$ be strictly increasing. [b]iii)[/b] $x_s+y_s+z_s+t_s=n$. (note that $s$ may vary). Find the number of good sequences. [i]proposed by Mohammad Ghiasi[/i]

ICMC 2, 4

Tags: function
Let \(f:\{0, 1\}^n \to \{0, 1\} \subseteq \mathbb{R}\) be a function. Call such a function a Boolean function. Let \(\wedge\) denote the component-wise multiplication in \(\{0,1\}^n\). For example, for \(n = 4\), \[(0,0,1,1) \wedge (0,1,0,1) = (0,0,0,1).\] Let \(S = \left\{i_1,i_2,\ldots ,i_k\right\} \subseteq \left\{1,2,\ldots ,n\right\}\). \(f\) is called the oligarchy function over \(S\) if \[f (x) = x_{i_1},x_{i_2},\ldots,x_{i_k}\ \text{ (with the usual multiplication),}\] where \(x_i\) denotes the \(i\)-th component of \(x\). By convention, \(f\) is called the oligarchy function over \(\emptyset\) if \(f\) is constantly 1. (i) Suppose \(f\) is not constantly zero. Show that \(f\) is an oligarchy function [u]if and only if[/u] \(f\) satisfies \[f(x\wedge y)=f(x)f(y),\ \forall x,y\in\left\{0,1\right\}^n.\] Let \(Y\) be a uniformly distributed random variable over \(\left\{0, 1\right\}^n\). Let \(T\) be an operator that maps Boolean functions to functions \(\left\{0, 1\right\}^n\to\mathbb{R}\), such that \[(Tf)(x)=E_Y(f(x\wedge Y)),\ \forall x\in\left\{0,1\right\}^n\] where \(E_Y()\) denotes the expectation over \(Y\). \(f\) is called an eigenfunction of \(T\) if \(\exists\lambda\in\mathbb{R}\backslash\left\{0\right\}\) such that \[(Tf)(x)=\lambda f(x),\ \forall x\in\left\{0,1\right\}^n\] (ii) Prove that \(f\) is an eigenfunction of \(T\) [u]if and only if[/u] \(f\) is an oligarchy function.

1990 Brazil National Olympiad, 5

Let $f(x)=\frac{ax+b}{cx+d}$ $F_n(x)=f(f(f...f(x)...))$ (with $n\ f's$) Suppose that $f(0) \not =0$, $f(f(0)) \not = 0$, and for some $n$ we have $F_n(0)=0$, show that $F_n(x)=x$ (for any valid x).

2013 India IMO Training Camp, 1

Let $n \ge 2$ be an integer. There are $n$ beads numbered $1, 2, \ldots, n$. Two necklaces made out of some of these beads are considered the same if we can get one by rotating the other (with no flipping allowed). For example, with $n \ge 5$, the necklace with four beads $1, 5, 3, 2$ in the clockwise order is same as the one with $5, 3, 2, 1$ in the clockwise order, but is different from the one with $1, 2, 3, 5$ in the clockwise order. We denote by $D_0(n)$ (respectively $D_1(n)$) the number of ways in which we can use all the beads to make an even number (resp. an odd number) of necklaces each of length at least $3$. Prove that $n - 1$ divides $D_1(n) - D_0(n)$.

2023 Belarus Team Selection Test, 3.3

Let $m,n \geqslant 2$ be integers, let $X$ be a set with $n$ elements, and let $X_1,X_2,\ldots,X_m$ be pairwise distinct non-empty, not necessary disjoint subset of $X$. A function $f \colon X \to \{1,2,\ldots,n+1\}$ is called [i]nice[/i] if there exists an index $k$ such that \[\sum_{x \in X_k} f(x)>\sum_{x \in X_i} f(x) \quad \text{for all } i \ne k.\] Prove that the number of nice functions is at least $n^n$.