This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2014 Contests, 4

Tags: function , algebra
Find all functions $f:\mathbb{R}\to\mathbb{R}$ such that $f(x)f(y)=f(x+y)+xy$ for all $x,y\in \mathbb{R}$.

2005 Today's Calculation Of Integral, 76

The function $f_n (x)\ (n=1,2,\cdots)$ is defined as follows. \[f_1 (x)=x,\ f_{n+1}(x)=2x^{n+1}-x^n+\frac{1}{2}\int_0^1 f_n(t)\ dt\ \ (n=1,2,\cdots)\] Evaluate \[\lim_{n\to\infty} f_n \left(1+\frac{1}{2n}\right)\]

1983 Miklós Schweitzer, 7

Prove that if the function $ f : \mathbb{R}^2 \rightarrow [0,1]$ is continuous and its average on every circle of radius $ 1$ equals the function value at the center of the circle, then $ f$ is constant. [i]V. Totik[/i]

1962 Putnam, B2

Let $S$ be the set of all subsets of the positive integers. Construct a function $f \colon \mathbb{R} \rightarrow S$ such that $f(a)$ is a proper subset of $f(b)$ whenever $a <b.$

2021 AMC 12/AHSME Spring, 18

Tags: function , prob
Let $f$ be a function defined on the set of positive rational numbers with the property that $f(a\cdot b)=f(a)+f(b)$ for all positive rational numbers $a$ and $b$. Suppose that $f$ also has the property that $f(p)=p$ for every prime number $p$. For which of the following numbers $x$ is $f(x)<0?$ $\textbf{(A) } \frac{17}{32} \qquad \textbf{(B) } \frac{11}{16} \qquad \textbf{(C) } \frac{7}{9} \qquad \textbf{(D) } \frac{7}{6} \qquad \textbf{(E) } \frac{25}{11}$

2001 Brazil Team Selection Test, Problem 1

Tags: function , algebra
Find all functions $ f $ defined on real numbers and taking values in the set of real numbers such that $ f(x+y)+f(y+z)+f(z+x) \geq f(x+2y+3z) $ for all real numbers $ x,y,z $. [hide]There is an infinity of such functions. Every function with the property that $ 3 \inf f \geq \sup f $ is a good one. I wonder if there is a way to find all the solutions. It seems very strange.[/hide]

2020 Romanian Master of Mathematics Shortlist, N1

Determine all pairs of positive integers $(m, n)$ for which there exists a bijective function \[f : \mathbb{Z}_m \times \mathbb{Z}_n \to \mathbb{Z}_m \times \mathbb{Z}_n\]such that the vectors $f(\mathbf{v}) + \mathbf{v}$, as $\mathbf{v}$ runs through all of $\mathbb{Z}_m \times \mathbb{Z}_n$, are pairwise distinct. (For any integers $a$ and $b$, the vectors $[a, b], [a + m, b]$ and $[a, b + n]$ are treated as equal.) [i]Poland, Wojciech Nadara[/i]

2021 OMMock - Mexico National Olympiad Mock Exam, 1

Find all functions $f \colon \mathbb{R} \to \mathbb{R}$ that satisfy the following property for all real numbers $x$ and all polynomials $P$ with real coefficients: If $P(f(x)) = 0$, then $f(P(x)) = 0$.

1993 USAMO, 1

Tags: algebra , function
For each integer $\, n \geq 2, \,$ determine, with proof, which of the two positive real numbers $\, a \,$ and $\, b \,$ satisfying \[ a^n = a + 1, \hspace{.3in} b^{2n} = b + 3a \] is larger.

PEN J Problems, 17

Show that $\phi(n)+\sigma(n) \ge 2n$ for all positive integers $n$.

1963 Swedish Mathematical Competition., 6

The real-valued function $f(x)$ is defined on the reals. It satisfies $|f(x)| \le A$, $|f''(x)| \le B$ for some positive $A, B$ (and all $x$). Show that $|f'(x)| \le C$, for some fixed$ C$, which depends only on $A$ and $B$. What is the smallest possible value of $C$?

2019 Iran Team Selection Test, 5

Find all functions $f:\mathbb{R}\rightarrow \mathbb{R}$ such that for all $x,y\in \mathbb{R}$: $$f\left(f(x)^2-y^2\right)^2+f(2xy)^2=f\left(x^2+y^2\right)^2$$ [i]Proposed by Ali Behrouz - Mojtaba Zare Bidaki[/i]

2004 China Western Mathematical Olympiad, 4

Let $\mathbb{N}$ be the set of positive integers. Let $n\in \mathbb{N}$ and let $d(n)$ be the number of divisors of $n$. Let $\varphi(n)$ be the Euler-totient function (the number of co-prime positive integers with $n$, smaller than $n$). Find all non-negative integers $c$ such that there exists $n\in\mathbb{N}$ such that \[ d(n) + \varphi(n) = n+c , \] and for such $c$ find all values of $n$ satisfying the above relationship.

1976 AMC 12/AHSME, 7

If $x$ is a real number, then the quantity $(1-|x|)(1+x)$ is positive if and only if $\textbf{(A) }|x|<1\qquad\textbf{(B) }|x|>1\qquad\textbf{(C) }x<-1\text{ or }-1<x<1\qquad$ $\textbf{(D) }x<1\qquad \textbf{(E) }x<-1$

1989 National High School Mathematics League, 3

For any function $f(x)$, in the same rectangular coordinates, figures of function $y=f(x-1)$ and $y=f(-x+1)$ $\text{(A)}$ are symmetrical about $x$-axis $\text{(B)}$ are symmetrical about line $x=1$ $\text{(C)}$ are symmetrical about line $x=-1$ $\text{(D)}$ are symmetrical about $y$-axis

2008 USA Team Selection Test, 9

Let $ n$ be a positive integer. Given an integer coefficient polynomial $ f(x)$, define its [i]signature modulo $ n$[/i] to be the (ordered) sequence $ f(1), \ldots , f(n)$ modulo $ n$. Of the $ n^n$ such $ n$-term sequences of integers modulo $ n$, how many are the signature of some polynomial $ f(x)$ if a) $ n$ is a positive integer not divisible by the square of a prime. b) $ n$ is a positive integer not divisible by the cube of a prime.

2006 CHKMO, 3

Let $a,b,c,d$ be positive real numbers such that $a+b+c+d=1$. Prove that\[ 6(a^3+b^3+c^3+d^3)\ge(a^2+b^2+c^2+d^2)+\frac{1}{8} \]

2014 Contests, 3

Let $ x,y,z $ be three non-negative real numbers such that \[x^2+y^2+z^2=2(xy+yz+zx). \] Prove that \[\dfrac{x+y+z}{3} \ge \sqrt[3]{2xyz}.\]

1991 Baltic Way, 9

Tags: function
Find the number of real solutions of the equation $a e^x = x^3$, where $a$ is a real parameter.

2017 Tuymaada Olympiad, 1

Tags: algebra , function
Functions $f$ and $g$ are defined on the set of all integers in the interval $[-100; 100]$ and take integral values. Prove that for some integral $k$ the number of solutions of the equation $f(x)-g(y)=k$ is odd.\\ ( A. Golovanov)

2009 Jozsef Wildt International Math Competition, W. 12

Find all functions $f: (0, +\infty)\cap\mathbb{Q}\to (0, +\infty)\cap\mathbb{Q}$ satisfying thefollowing conditions: [list=1] [*] $f(ax) \leq (f(x))^a$, for every $x\in (0, +\infty)\cap\mathbb{Q}$ and $a \in (0, 1)\cap\mathbb{Q}$ [*] $f(x+y) \leq f(x)f(y)$, for every $x,y\in (0, +\infty)\cap\mathbb{Q}$ [/list]

2003 Romania Team Selection Test, 5

Let $f\in\mathbb{Z}[X]$ be an irreducible polynomial over the ring of integer polynomials, such that $|f(0)|$ is not a perfect square. Prove that if the leading coefficient of $f$ is 1 (the coefficient of the term having the highest degree in $f$) then $f(X^2)$ is also irreducible in the ring of integer polynomials. [i]Mihai Piticari[/i]

2003 AMC 12-AHSME, 25

Let $ f(x)\equal{}\sqrt{ax^2\plus{}bx}$. For how many real values of $ a$ is there at least one positive value of $ b$ for which the domain of $ f$ and the range of $ f$ are the same set? $ \textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ \text{infinitely many}$

1984 Tournament Of Towns, (063) O4

Prove that, for any natural number $n$, the graph of any increasing function $f : [0,1] \to [0, 1]$ can be covered by $n$ rectangles each of area whose sides are parallel to the coordinate axes. Assume that a rectangle includes both its interior and boundary points. (a) Assume that $f(x)$ is continuous on $[0,1]$. (b) Do not assume that $f(x)$ is continuous on $[0,1]$. (A Andjans, Riga) PS. (a) for O Level, (b) for A Level

2011 AMC 12/AHSME, 21

Tags: function , domain , algebra
Let $f_1(x)=\sqrt{1-x}$, and for integers $n \ge 2$, let $f_n(x)=f_{n-1}(\sqrt{n^2-x})$. If $N$ is the largest value of $n$ for which the domain of $f_n$ is nonempty, the domain of $f_N$ is ${c}$. What is $N+c$? $ \textbf{(A)}\ -226 \qquad \textbf{(B)}\ -144 \qquad \textbf{(C)}\ -20 \qquad \textbf{(D)}\ 20 \qquad \textbf{(E)}\ 144$