Found problems: 4776
2010 AMC 12/AHSME, 13
In $ \triangle ABC, \ \cos(2A \minus{} B) \plus{} \sin(A\plus{}B) \equal{} 2$ and $ AB\equal{}4.$ What is $ BC?$
$ \textbf{(A)}\ \sqrt{2} \qquad \textbf{(B)}\ \sqrt{3} \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 2\sqrt{2} \qquad \textbf{(E)}\ 2\sqrt{3}$
2016 China Second Round Olympiad, Q10
Let $f(x)$ is an odd function on $R$ , $f(1)=1$ and $f(\frac{x}{x-1})=xf(x)$ $(\forall x<0)$.
Find the value of $f(1)f(\frac{1}{100})+f(\frac{1}{2})f(\frac{1}{99})+f(\frac{1}{3})f(\frac{1}{98})+\cdots +f(\frac{1}{50})f(\frac{1}{51}).$
2004 Hong kong National Olympiad, 4
Let $S=\{1,2,...,100\}$ . Find number of functions $f: S\to S$ satisfying the following conditions
a)$f(1)=1$
b)$f$ is bijective
c)$f(n)=f(g(n))f(h(n))\forall n\in S$, where $g(n),h(n)$ are positive integer numbers such that $g(n)\leq h(n),n=g(n)h(n)$ that minimize $h(n)-g(n)$.
2007 Romania National Olympiad, 4
Given a set $A$ and a function $f: A\rightarrow A$, denote by $f_{1}(A)=f(A)$, $f_{2}(A)=f(f_{1}(A))$, $f_{3}(A)=f(f_{2}(A))$, and so on, ($f_{n}(A)=f(f_{n-1}(A))$, where the notation $f(B)$ means the set $\{ f(x) \ : \ x\in B\}$ of images of points from $B$).
Denote also by $f_{\infty}(A)=f_{1}(A)\cap f_{2}(A)\cap \ldots = \bigcap_{n\geq 1}f_{n}(A)$.
a) Show that if $A$ is finite, then $f(f_{\infty}(A))=f_{\infty}(A)$.
b) Determine if the above is true for $A=\mathbb{N}\times \mathbb{N}$ and the function
\[f\big((m,n)\big)=\begin{cases}(m+1,n) & \mbox{if }n\geq m\geq 1 \\ (0,0) & \mbox{if }m>n \\ (0,n+1) & \mbox{if }n=0. \end{cases}\]
1996 Baltic Way, 14
The graph of the function $f(x)=x^n+a_{n-1}x_{n-1}+\ldots +a_1x+a_0$ (where $n>1$) intersects the line $y=b$ at the points $B_1,B_2,\ldots ,B_n$ (from left to right), and the line $y=c\ (c\not= b)$ at the points $C_1,C_2,\ldots ,C_n$ (from left to right). Let $P$ be a point on the line $y=c$, to the right to the point $C_n$. Find the sum
\[\cot (\angle B_1C_1P)+\ldots +\cot (\angle B_nC_nP) \]
1995 All-Russian Olympiad, 3
Can the equation $f(g(h(x))) = 0$, where $f$, $g$, $h$ are quadratic polynomials, have the solutions $1, 2, 3, 4, 5, 6, 7, 8$?
[i]S. Tokarev[/i]
2003 National Olympiad First Round, 32
The function $f$ satisfies $f(x)+3f(1-x)=x^2$ for every real $x$. If $S=\{x \mid f(x)=0 \}$, which one is true?
$\textbf{(A)}$ $S$ is an infinite set.
$\textbf{(B)}$ $\{0,1\} \subset S$
$\textbf{(C)}$ $S=\phi$
$\textbf{(D)}$ $S = \{(3+\sqrt 3)/2, (3-\sqrt 3)/2\}$
$\textbf{(E)}$ None of above
2015 Postal Coaching, Problem 2
Find all functions $f: \mathbb{Q} \to \mathbb{R}$ such that $f(xy)=f(x)f(y)+f(x+y)-1$ for all rationals $x,y$
1998 Harvard-MIT Mathematics Tournament, 4
Find the range of $ f(A)=\frac{\sin A(3\cos^{2}A+\cos^{4}A+3\sin^{2}A+\sin^{2}A\cos^{2}A)}{\tan A (\sec A-\sin A\tan A)} $ if $A\neq \dfrac{n\pi}{2}$.
2005 Germany Team Selection Test, 2
If $a$, $b$, $c$ are positive reals such that $a+b+c=1$, prove that
\[\frac{1+a}{1-a}+\frac{1+b}{1-b}+\frac{1+c}{1-c}\leq 2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right).\]
2008 USAPhO, 2
A uniform pool ball of radius $r$ and mass $m$ begins at rest on a pool table. The ball is given a horizontal impulse $J$ of fixed magnitude at a distance $\beta r$ above its center, where $-1 \le \beta \le 1$. The coefficient of kinetic friction between the ball and the pool table is $\mu$. You may assume the ball and the table are perfectly rigid. Ignore effects due to deformation. (The moment of inertia about the center of mass of a solid sphere of mass $m$ and radius $r$ is $I_{cm} = \frac{2}{5}mr^2$.)
[asy]
size(250);
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps);
filldraw(circle((0,0),1),gray(.8));
draw((-3,-1)--(3,-1));
draw((-2.4,0.1)--(-2.4,0.6),EndArrow);
draw((-2.5,0)--(2.5,0),dashed);
draw((-2.75,0.7)--(-0.8,0.7),EndArrow);
label("$J$",(-2.8,0.7),W);
label("$\beta r$",(-2.3,0.35),E);
draw((0,-1.5)--(0,1.5),dashed);
draw((1.7,-0.1)--(1.7,-0.9),BeginArrow,EndArrow);
label("$r$",(1.75,-0.5),E);
[/asy]
(a) Find an expression for the final speed of the ball as a function of $J$, $m$, and $\beta$.
(b) For what value of $\beta$ does the ball immediately begin to roll without slipping, regardless of the value of $\mu$?
2010 Today's Calculation Of Integral, 657
A sequence $a_n$ is defined by $\int_{a_n}^{a_{n+1}} (1+|\sin x|)dx=(n+1)^2\ (n=1,\ 2,\ \cdots),\ a_1=0$.
Find $\lim_{n\to\infty} \frac{a_n}{n^3}$.
1998 Harvard-MIT Mathematics Tournament, 4
Let $f(x)=1+\dfrac{x}{2}+\dfrac{x^2}{4}+\dfrac{x^3}{8}+\cdots,$ for $-1\leq x \leq 1$. Find $\sqrt{e^{\int\limits_0^1 f(x)dx}}$.
1948 Putnam, A2
Two spheres in contact have a common tangent cone. These three surfaces divide the space into various parts, only one of which is bounded by all three surfaces, it is "ring-shaped." Being given the radii of the spheres, $r$ and $R$, find the volume of the "ring-shaped" part. (The desired expression is a rational function of $r$ and $R.$)
PEN K Problems, 30
Find all functions $f: \mathbb{N}\to \mathbb{N}$ such that for all $n\in \mathbb{N}$: \[f(f(f(n)))+f(f(n))+f(n)=3n.\]
2024-IMOC, A7
Given positive integers $n$, $P_1$, $P_2$, …$P_n$ and two sets
\[B=\{ (a_1,a_2,…,a_n)|a_i=0 \vee 1,\ \forall i \in \mathbb{N} \}, S=\{ (x_1,x_2,…,x_n)|1 \leq x_i \leq P_i \wedge x_i \in \mathbb{N} ,\ \forall i \in \mathbb{N} \}\]
A function $f:S \to \mathbb{Z}$ is called [b]Real[/b], if and only if for any positive integers $(y_1,y_2,…,y_n)$ and positive integer $a$ which satisfied $ 1 \leq y_i \leq P_i-a$ $\forall i \in \mathbb{N}$, we always have:
\begin{align*}
\sum_{(a_1,a_2,…,a_n) \in B \wedge 2| \sum_{i=1}^na_i}f(y+a \times a_1,y+a \times a_2,……,y+a \times a_n)&>\\
\sum_{(a_1,a_2,…,a_n) \in B \wedge 2 \nmid \sum_{i=1}^na_i}f(y+a \times a_1,y+a \times a_2,……,y+a \times a_n)&.
\end{align*}
Find the minimum of $\sum_{i_1=1}^{P_1}\sum_{i_2=1}^{P_2}....\sum_{i_n=1}^{P_n}|f(i_1,i_2,...,i_n)|$, where $f$ is a [b]Real[/b] function.
[i]Proposed by tob8y[/i]
2015 AMC 12/AHSME, 21
Cozy the Cat and Dash the Dog are going up a staircase with a certain number of steps. However, instead of walking up the steps one at a time, both Cozy and Dash jump. Cozy goes two steps up with each jump (though if necessary, he will just jump the last step). Dash goes five steps up with each jump (though if necessary, he will just jump the last steps if there are fewer than 5 steps left). Suppose the Dash takes 19 fewer jumps than Cozy to reach the top of the staircase. Let $s$ denote the sum of all possible numbers of steps this staircase can have. What is the sum of the digits of $s$?
$\textbf{(A) } 9
\qquad\textbf{(B) } 11
\qquad\textbf{(C) } 12
\qquad\textbf{(D) } 13
\qquad\textbf{(E) } 15
$
2023 Iran Team Selection Test, 5
Find all injective $f:\mathbb{Z}\ge0 \to \mathbb{Z}\ge0 $ that for every natural number $n$ and real numbers $a_0,a_1,...,a_n$ (not everyone equal to $0$), polynomial $\sum_{i=0}^{n}{a_i x^i}$ have real root if and only if $\sum_{i=0}^{n}{a_i x^{f(i)}}$ have real root.
[i]Proposed by Hesam Rajabzadeh [/i]
2009 Korea National Olympiad, 4
For a positive integer $n$, define a function $ f_n (x) $ at an interval $ [ 0, n+1 ] $ as
\[ f_n (x) = ( \sum_{i=1} ^ {n} | x-i | )^2 - \sum_{i=1} ^{n} (x-i)^2 . \]
Let $ a_n $ be the minimum value of $f_n (x) $. Find the value of
\[ \sum_{n=1}^{11} (-1)^{n+1} a_n . \]
2010 Miklós Schweitzer, 6
Is there a continuous function $ f: \mathbb {R} ^ {2} \rightarrow \mathbb {R} $ for every $ d \in \mathbb {R} $ we have $ g_{m,d}(x) = f (x, m x + d) $ is strictly monotonic on $ \mathbb {R} $ if $ m \ge 0, $ and not monotone on any non-empty open interval if $ m <0? $
1958 November Putnam, A1
Let $f(m,1)=f(1,n)=1$ for $m\geq 1, n\geq 1$ and let $f(m,n)=f(m-1, n)+ f(m, n-1) +f(m-1 ,n-1)$ for $m>1$ and $n>1$. Also let
$$ S(n)= \sum_{a+b=n} f(a,b) \,\,\;\; a\geq 1 \,\, \text{and} \,\; b\geq 1.$$
Prove that
$$S(n+2) =S(n) +2S(n+1) \,\, \; \text{for} \, \, n \geq 2.$$
2005 Iran Team Selection Test, 2
Suppose there are $n$ distinct points on plane. There is circle with radius $r$ and center $O$ on the plane. At least one of the points are in the circle. We do the following instructions. At each step we move $O$ to the baricenter of the point in the circle. Prove that location of $O$ is constant after some steps.
2005 Federal Competition For Advanced Students, Part 2, 1
The function $f : (0,...2005) \rightarrow N$ has the properties that $f(2x+1)=f(2x)$, $f(3x+1)=f(3x)$ and $f(5x+1)=f(5x)$ with $x \in (0,1,2,...,2005)$. How many different values can the function assume?
2011 Pre - Vietnam Mathematical Olympiad, 2
Find all function $f,g: \mathbb{Q} \to \mathbb{Q}$ such that
\[\begin{array}{l}
f\left( {g\left( x \right) - g\left( y \right)} \right) = f\left( {g\left( x \right)} \right) - y \\
g\left( {f\left( x \right) - f\left( y \right)} \right) = g\left( {f\left( x \right)} \right) - y \\
\end{array}\]
for all $x,y \in \mathbb{Q}$.
2018 Chile National Olympiad, 4
Find all postitive integers n such that
$$\left\lfloor \frac{n}{2} \right\rfloor \cdot \left\lfloor \frac{n}{3} \right\rfloor \cdot \left\lfloor \frac{n}{4} \right\rfloor=n^2$$
where $\lfloor x \rfloor$ represents the largest integer less than the real number $x$.