Found problems: 4776
2007 Today's Calculation Of Integral, 197
Let $|a|<\frac{\pi}{2}.$ Evaluate the following definite integral.
\[\int_{0}^{\frac{\pi}{2}}\frac{dx}{\{\sin (a+x)+\cos x\}^{2}}\]
1987 Czech and Slovak Olympiad III A, 3
Let $f:(0,\infty)\to(0,\infty)$ be a function satisfying $f\bigl(xf(y)\bigr)+f\bigl(yf(x)\bigr)=2xy$ for all $x,y>0$. Show that $f(x) = x$ for all positive $x$.
1998 Harvard-MIT Mathematics Tournament, 9
Suppose $f(x)$ is a rational function such that $3f\left(\dfrac{1}{x}\right)+\dfrac{2f(x)}{x}=x^2$ for $x\neq 0$. Find $f(-2)$.
2002 AMC 12/AHSME, 19
The graph of the function $ f$ is shown below. How many solutions does the equation $ f(f(x)) \equal{} 6$ have?
[asy]size(220);
defaultpen(fontsize(10pt)+linewidth(.8pt));
dotfactor=4;
pair P1=(-7,-4), P2=(-2,6), P3=(0,0), P4=(1,6), P5=(5,-6);
real[] xticks={-7,-6,-5,-4,-3,-2,-1,1,2,3,4,5,6};
real[] yticks={-6,-5,-4,-3,-2,-1,1,2,3,4,5,6};
draw(P1--P2--P3--P4--P5);
dot("(-7, -4)",P1);
dot("(-2, 6)",P2,LeftSide);
dot("(1, 6)",P4);
dot("(5, -6)",P5);
xaxis("$x$",-7.5,7,Ticks(xticks),EndArrow(6));
yaxis("$y$",-6.5,7,Ticks(yticks),EndArrow(6));[/asy]$ \textbf{(A)}\ 2 \qquad \textbf{(B)}\ 4 \qquad \textbf{(C)}\ 5 \qquad \textbf{(D)}\ 6 \qquad \textbf{(E)}\ 7$
1994 IberoAmerican, 2
Let $n$ and $r$ two positive integers. It is wanted to make $r$ subsets $A_1,\ A_2,\dots,A_r$ from the set $\{0,1,\cdots,n-1\}$ such that all those subsets contain exactly $k$ elements and such that, for all integer $x$ with $0\leq{x}\leq{n-1}$ there exist $x_1\in{}A_1,\ x_2\in{}A_2 \dots,x_r\in{}A_r$ (an element of each set) with $x=x_1+x_2+\cdots+x_r$.
Find the minimum value of $k$ in terms of $n$ and $r$.
2006 Bulgaria National Olympiad, 2
Let $f:\mathbb{R}^+\to\mathbb{R}^+$ be a function that satisfies for all $x>y>0$
\[f(x+y)-f(x-y)=4\sqrt{f(x)f(y)}\]
a) Prove that $f(2x)=4f(x)$ for all $x>0$;
b) Find all such functions.
[i]Nikolai Nikolov, Oleg Mushkarov [/i]
2008 Mathcenter Contest, 6
Find all functions $f:\mathbb{R} \to \mathbb{R}$ satisfying the equation \[
f(x^2+y^2+2f(xy)) = (f(x+y))^2.
\] for all $x,y \in \mathbb{R}$.
1995 Italy TST, 3
A function $f:\mathbb{R}\rightarrow\mathbb{R}$ satisfies the conditions
\[\begin{cases}f(x+24)\le f(x)+24\\ f(x+77)\ge f(x)+77\end{cases}\quad\text{for all}\ x\in\mathbb{R}\]
Prove that $f(x+1)=f(x)+1$ for all real $x$.
2005 Slovenia National Olympiad, Problem 1
Evaluate the sum $\left\lfloor\log_21\right\rfloor+\left\lfloor\log_22\right\rfloor+\left\lfloor\log_23\right\rfloor+\ldots+\left\lfloor\log_2256\right\rfloor$.
2010 IMC, 4
Let $a,b$ be two integers and suppose that $n$ is a positive integer for which the set $\mathbb{Z} \backslash \{ax^n + by^n \mid x,y \in \mathbb{Z}\}$ is finite. Prove that $n=1$.
2010 Brazil Team Selection Test, 2
Let $f$ be a non-constant function from the set of positive integers into the set of positive integer, such that $a-b$ divides $f(a)-f(b)$ for all distinct positive integers $a$, $b$. Prove that there exist infinitely many primes $p$ such that $p$ divides $f(c)$ for some positive integer $c$.
[i]Proposed by Juhan Aru, Estonia[/i]
PEN S Problems, 13
The sum of the digits of a natural number $n$ is denoted by $S(n)$. Prove that $S(8n) \ge \frac{1}{8} S(n)$ for each $n$.
2018 Dutch IMO TST, 2
Find all functions $f : R \to R$ such that $f(x^2)-f(y^2) \le (f(x)+y) (x-f(y))$ for all $x, y \in R$.
2008 Romania National Olympiad, 1
Let $ f : (0,\infty) \to \mathbb R$ be a continous function such that the sequences $ \{f(nx)\}_{n\geq 1}$ are nondecreasing for any real number $ x$. Prove that $ f$ is nondecreasing.
2013 Today's Calculation Of Integral, 867
Express $\int_0^2 f(x)dx$ for any quadratic functions $f(x)$ in terms of $f(0),\ f(1)$ and $f(2).$
2014 Contests, 1b
Find all functions $f : R-\{0\} \to R$ which satisfy $(1 + y)f(x) - (1 + x)f(y) = yf(x/y) - xf(y/x)$ for all real $x, y \ne 0$, and which take the values $f(1) = 32$ and $f(-1) = -4$.
2003 AIME Problems, 13
A bug starts at a vertex of an equilateral triangle. On each move, it randomly selects one of the two vertices where it is not currently located, and crawls along a side of the triangle to that vertex. Given that the probability that the bug moves to its starting vertex on its tenth move is $m/n,$ where $m$ and $n$ are relatively prime positive integers, find $m+n.$
2004 Romania National Olympiad, 1
Find all continuous functions $f : \mathbb R \to \mathbb R$ such that for all $x \in \mathbb R$ and for all $n \in \mathbb N^{\ast}$ we have \[ n^2 \int_{x}^{x + \frac{1}{n}} f(t) \, dt = n f(x) + \frac12 . \]
[i]Mihai Piticari[/i]
2021 AMC 10 Fall, 23
For each positive integer $n$, let $f_1(n)$ be twice the number of positive integer divisors of $n$, and for $j \ge 2$, let $f_j(n) = f_1(f_{j-1}(n))$. For how many values of $n \le 50$ is $f_{50}(n) = 12?$
$\textbf{(A) }7\qquad\textbf{(B) }8\qquad\textbf{(C) }9\qquad\textbf{(D) }10\qquad\textbf{(E) }11$
1991 Arnold's Trivium, 6
In the $(x,y)$-plane sketch the curve given parametrically by $x=2t-4t^3$, $y=t^2-3t^4$.
2022 ELMO Revenge, 4
Find all ordered pairs of integers $(a,b)$ such that there exists a function $f\colon \mathbb{N} \to \mathbb{N}$ satisfying
$$f^{f(n)}(n)=an+b$$
For all $n\in \mathbb{N}$.
2011 SEEMOUS, Problem 1
Let $f:[0,1]\rightarrow R$ be a continuous function and n be an integer number,n>0.Prove that $\int_0^1f(x)dx \le (n+1)*\int_0^1 x^n*f(x)dx $
1997 Czech And Slovak Olympiad IIIA, 5
For a given integer $n \ge 2$, find the maximum possible value of $V_n = \sin x_1 \cos x_2 +\sin x_2 \cos x_3 +...+\sin x_n \cos x_1$, where $x_1,x_2,...,x_n$ are real numbers.
2018 ISI Entrance Examination, 3
Let $f:\mathbb{R}\to\mathbb{R}$ be a continuous function such that for all $x\in\mathbb{R}$ and for all $t\geqslant 0$, $$f(x)=f(e^tx)$$ Show that $f$ is a constant function.
1996 Canada National Olympiad, 5
Let $r_1$, $r_2$, $\ldots$, $r_m$ be a given set of $m$ positive rational numbers such that $\sum_{k=1}^m r_k = 1$. Define the function $f$ by $f(n)= n-\sum_{k=1}^m \: [r_k n]$ for each positive integer $n$. Determine the minimum and maximum values of $f(n)$. Here ${\ [ x ]}$ denotes the greatest integer less than or equal to $x$.