This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2007 Nicolae Păun, 2

Consider a sequence of positive real numbers $ \left( x_n \right)_{n\ge 1} $ and a primitivable function $ f:\mathbb{R}\longrightarrow\mathbb{R} . $ [b]a)[/b] Prove that $ f $ is monotonic and continuous if for any natural numbers $ n $ and real numbers $ x, $ the inequality $$ f\left( x+x_n \right)\geqslant f(x) $$ is true. [b]b)[/b] Show that $ f $ is convex if for any natural numbers $ n $ and real numbers $ x, $ the inequality $$ f\left( x+2x_n \right) +f(x)\geqslant 2f\left( x+x_n \right) $$ is true. [i]Sorin Rădulescu[/i] and [i]Ion Savu[/i]

2007 AMC 12/AHSME, 24

For each integer $ n > 1,$ let $ F(n)$ be the number of solutions of the equation $ \sin x \equal{} \sin nx$ on the interval $ [0,\pi].$ What is $ \sum_{n \equal{} 2}^{2007}F(n)?$ $ \textbf{(A)}\ 2,014,524 \qquad \textbf{(B)}\ 2,015,028 \qquad \textbf{(C)}\ 2,015,033 \qquad \textbf{(D)}\ 2,016,532 \qquad \textbf{(E)}\ 2,017,033$

2012 Romania National Olympiad, 1

[color=darkred]Let $f,g\colon [0,1]\to [0,1]$ be two functions such that $g$ is monotonic, surjective and $|f(x)-f(y)|\le |g(x)-g(y)|$ , for any $x,y\in [0,1]$ . [list] [b]a)[/b] Prove that $f$ is continuous and that there exists some $x_0\in [0,1]$ with $f(x_0)=g(x_0)$ . [b]b)[/b] Prove that the set $\{x\in [0,1]\, |\, f(x)=g(x)\}$ is a closed interval. [/list][/color]

2008 Bosnia And Herzegovina - Regional Olympiad, 4

$ n$ points (no three being collinear) are given in a plane. Some points are connected and they form $ k$ segments. If no three of these segments form triangle ( equiv. there are no three points, such that each two of them are connected) prove that $ k \leq \left \lfloor \frac {n^{2}}{4}\right\rfloor$

2015 China Team Selection Test, 4

Let $n$ be a positive integer, let $f_1(x),\ldots,f_n(x)$ be $n$ bounded real functions, and let $a_1,\ldots,a_n$ be $n$ distinct reals. Show that there exists a real number $x$ such that $\sum^n_{i=1}f_i(x)-\sum^n_{i=1}f_i(x-a_i)<1$.

1995 Flanders Math Olympiad, 2

How many values of $x\in\left[ 1,3 \right]$ are there, for which $x^2$ has the same decimal part as $x$?

1990 Flanders Math Olympiad, 4

Let $f:\mathbb{R}^+_0 \rightarrow \mathbb{R}^+_0$ be a strictly decreasing function. (a) Be $a_n$ a sequence of strictly positive reals so that $\forall k \in \mathbb{N}_0:k\cdot f(a_k)\geq (k+1)\cdot f(a_{k+1})$ Prove that $a_n$ is ascending, that $\displaystyle\lim_{k\rightarrow +\infty} f(a_k)$ = 0and that $\displaystyle\lim_{k\rightarrow +\infty} a_k =+\infty$ (b) Prove that there exist such a sequence ($a_n$) in $\mathbb{R}^+_0$ if you know $\displaystyle\lim_{x\rightarrow +\infty} f(x)=0$.

PEN K Problems, 27

Find all functions $f: \mathbb{N}\to \mathbb{N}$ such that for all $m,n\in \mathbb{N}$: \[f(f(m)+f(n))=m+n.\]

2009 Kyrgyzstan National Olympiad, 3

For function $ f: \mathbb{R} \to \mathbb{R}$ given that $ f(x^2 +x +3) +2 \cdot f(x^2 - 3x + 5) = 6x^2 - 10x +17$, calculate $ f(2009)$.

2009 Kyrgyzstan National Olympiad, 8

Tags: function , algebra , limit
Does there exist a function $ f: {\Bbb N} \to {\Bbb N}$ such that $ f(f(n \minus{} 1)) \equal{} f(n \plus{} 1) \minus{} f(n)$ for all $ n > 2$.

2010 Indonesia TST, 3

Determine all real numbers $ a$ such that there is a function $ f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying \[ x\plus{}f(y)\equal{}af(y\plus{}f(x))\] for all real numbers $ x$ and $ y$. [i]Hery Susanto, Malang[/i]

2014 Turkey Team Selection Test, 2

Find all $f$ functions from real numbers to itself such that for all real numbers $x,y$ the equation \[f(f(y)+x^2+1)+2x=y+(f(x+1))^2\] holds.

1997 Estonia National Olympiad, 2

A function $f$ satisfies the following condition for each $n\in N$: $f (1)+ f (2)+...+ f (n) = n^2 f (n)$. Find $f (1997)$ if $f (1) = 999$.

1986 Traian Lălescu, 1.4

Let be a parametric set: $$ \mathcal{F}_{\lambda } =\left\{ f:[1,\infty)\longrightarrow\mathbb{R}\bigg| x\in(1,\infty )\implies \int_{x}^{x^2+\lambda^2 x} f\left( \xi\right) d\xi =1\right\} . $$ [b]a)[/b] Show that $ \mathcal{F}_0 =\emptyset . $ [b]b)[/b] Prove that $ \lambda\neq 0 $ implies $ \mathcal{F}_{\lambda }\neq\emptyset . $

2012 District Olympiad, 3

Let $G$ a $n$ elements group. Find all the functions $f:G\rightarrow \mathbb{N}^*$ such that: (a) $f(x)=1$ if and only if $x$ is $G$'s identity; (b) $f(x^k)=\frac{f(x)}{(f(x),k)}$ for any divisor $k$ of $n$, where $(r,s)$ stands for the greatest common divisor of the positive integers $r$ and $s$.

2020 OMpD, 4

Let $\mathbb{R}^+$ the set of positive real numbers. Determine all the functions $f, g: \mathbb{R}^+ \rightarrow \mathbb{R}^+$ such that, for all positive real numbers $x, y$ we have that $$f(x + g(y)) = f(x + y) + g(y) \text{ and } g(x + f(y)) = g(x + y) + f(y)$$

2007 Korea - Final Round, 5

For the vertex $ A$ of a triangle $ ABC$, let $ l_a$ be the distance between the projections on $ AB$ and $ AC$ of the intersection of the angle bisector of ∠$ A$ with side $ BC$. Define $ l_b$ and $ l_c$ analogously. If $ l$ is the perimeter of triangle $ ABC$, prove that $ \frac{l_a l_b l_c}{l^3}\le\frac{1}{64}$.

1990 IMO Longlists, 4

Find the minimal value of the function \[\begin{array}{c}\ f(x) =\sqrt{15 - 12 \cos x} + \sqrt{4 -2 \sqrt 3 \sin x}+\sqrt{7-4\sqrt 3 \sin x} +\sqrt{10-4 \sqrt 3 \sin x - 6 \cos x}\end{array}\]

2010 AIME Problems, 9

Let $ (a,b,c)$ be the real solution of the system of equations $ x^3 \minus{} xyz \equal{} 2$, $ y^3 \minus{} xyz \equal{} 6$, $ z^3 \minus{} xyz \equal{} 20$. The greatest possible value of $ a^3 \plus{} b^3 \plus{} c^3$ can be written in the form $ \frac{m}{n}$, where $ m$ and $ n$ are relatively prime positive integers. Find $ m \plus{} n$.

2012 China Team Selection Test, 2

Given two integers $m,n$ which are greater than $1$. $r,s$ are two given positive real numbers such that $r<s$. For all $a_{ij}\ge 0$ which are not all zeroes,find the maximal value of the expression \[f=\frac{(\sum_{j=1}^{n}(\sum_{i=1}^{m}a_{ij}^s)^{\frac{r}{s}})^{\frac{1}{r}}}{(\sum_{i=1}^{m})\sum_{j=1}^{n}a_{ij}^r)^{\frac{s}{r}})^{\frac{1}{s}}}.\]

2003 AIME Problems, 13

Let $N$ be the number of positive integers that are less than or equal to 2003 and whose base-2 representation has more 1's than 0's. Find the remainder when $N$ is divided by 1000.

2020 IMC, 5

Find all twice continuously differentiable functions $f: \mathbb{R} \to (0, \infty)$ satisfying $f''(x)f(x) \ge 2f'(x)^2.$

2016 Korea USCM, 4

Suppose a continuous function $f:[-\frac{\pi}{4},\frac{\pi}{4}]\to[-1,1]$ and differentiable on $(-\frac{\pi}{4},\frac{\pi}{4})$. Then, there exists a point $x_0\in (-\frac{\pi}{4},\frac{\pi}{4})$ such that $$|f'(x_0)|\leq 1+f(x_0)^2$$

2015 AMC 10, 21

Cozy the Cat and Dash the Dog are going up a staircase with a certain number of steps. However, instead of walking up the steps one at a time, both Cozy and Dash jump. Cozy goes two steps up with each jump (though if necessary, he will just jump the last step). Dash goes five steps up with each jump (though if necessary, he will just jump the last steps if there are fewer than 5 steps left). Suppose the Dash takes 19 fewer jumps than Cozy to reach the top of the staircase. Let $s$ denote the sum of all possible numbers of steps this staircase can have. What is the sum of the digits of $s$? $\textbf{(A) } 9 \qquad\textbf{(B) } 11 \qquad\textbf{(C) } 12 \qquad\textbf{(D) } 13 \qquad\textbf{(E) } 15 $

2014 Iran Team Selection Test, 5

$n$ is a natural number. for every positive real numbers $x_{1},x_{2},...,x_{n+1}$ such that $x_{1}x_{2}...x_{n+1}=1$ prove that: $\sqrt[x_{1}]{n}+...+\sqrt[x_{n+1}]{n} \geq n^{\sqrt[n]{x_{1}}}+...+n^{\sqrt[n]{x_{n+1}}}$