This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2010 CHKMO, 3

Let $ \triangle ABC$ be a right-angled triangle with $ \angle C\equal{}90^\circ$. $ CD$ is the altitude from $ C$ to $ AB$, with $ D$ on $ AB$. $ \omega$ is the circumcircle of $ \triangle BCD$. $ \omega_1$ is a circle situated in $ \triangle ACD$, it is tangent to the segments $ AD$ and $ AC$ at $ M$ and $ N$ respectively, and is also tangent to circle $ \omega$. (i) Show that $ BD\cdot CN\plus{}BC\cdot DM\equal{}CD\cdot BM$. (ii) Show that $ BM\equal{}BC$.

1990 Canada National Olympiad, 5

The function $f : \mathbb N \to \mathbb R$ satisfies $f(1) = 1, f(2) = 2$ and \[f (n+2) = f(n+2 - f(n+1) ) + f(n+1 - f(n) ).\] Show that $0 \leq f(n+1) - f(n) \leq 1$. Find all $n$ for which $f(n) = 1025$.

2001 Irish Math Olympiad, 5

Tags: function , algebra
Determine all functions $ f: \mathbb{N} \rightarrow \mathbb{N}$ which satisfy: $ f(x\plus{}f(y))\equal{}f(x)\plus{}y$ for all $ x,y \in \mathbb{N}$.

2021 Iran Team Selection Test, 4

Find all functions $f : \mathbb{N} \rightarrow \mathbb{R}$ such that for all triples $a,b,c$ of positive integers the following holds : $$f(ac)+f(bc)-f(c)f(ab) \ge 1$$ Proposed by [i]Mojtaba Zare[/i]

2013 Putnam, 3

Suppose that the real numbers $a_0,a_1,\dots,a_n$ and $x,$ with $0<x<1,$ satisfy \[\frac{a_0}{1-x}+\frac{a_1}{1-x^2}+\cdots+\frac{a_n}{1-x^{n+1}}=0.\] Prove that there exists a real number $y$ with $0<y<1$ such that \[a_0+a_1y+\cdots+a_ny^n=0.\]

2006 Bundeswettbewerb Mathematik, 1

A circular disk is partitioned into $ 2n$ equal sectors by $ n$ straight lines through its center. Then, these $ 2n$ sectors are colored in such a way that exactly $ n$ of the sectors are colored in blue, and the other $ n$ sectors are colored in red. We number the red sectors with numbers from $ 1$ to $ n$ in counter-clockwise direction (starting at some of these red sectors), and then we number the blue sectors with numbers from $ 1$ to $ n$ in clockwise direction (starting at some of these blue sectors). Prove that one can find a half-disk which contains sectors numbered with all the numbers from $ 1$ to $ n$ (in some order). (In other words, prove that one can find $ n$ consecutive sectors which are numbered by all numbers $ 1$, $ 2$, ..., $ n$ in some order.) [hide="Problem 8 from CWMO 2007"]$ n$ white and $ n$ black balls are placed at random on the circumference of a circle.Starting from a certain white ball,number all white balls in a clockwise direction by $ 1,2,\dots,n$. Likewise number all black balls by $ 1,2,\dots,n$ in anti-clockwise direction starting from a certain black ball.Prove that there exists a chain of $ n$ balls whose collection of numbering forms the set $ \{1,2,3\dots,n\}$.[/hide]

2009 China Team Selection Test, 1

Let $ \alpha,\beta$ be real numbers satisfying $ 1 < \alpha < \beta.$ Find the greatest positive integer $ r$ having the following property: each of positive integers is colored by one of $ r$ colors arbitrarily, there always exist two integers $ x,y$ having the same color such that $ \alpha\le \frac {x}{y}\le\beta.$

2002 Balkan MO, 4

Determine all functions $f: \mathbb N\to \mathbb N$ such that for every positive integer $n$ we have: \[ 2n+2001\leq f(f(n))+f(n)\leq 2n+2002. \]

1966 Miklós Schweitzer, 8

Prove that in Euclidean ring $ R$ the quotient and remainder are always uniquely determined if and only if $ R$ is a polynomial ring over some field and the value of the norm is a strictly monotone function of the degree of the polynomial. (To be precise, there are two trivial cases: $ R$ can also be a field or the null ring.) [i]E. Fried[/i]

2010 Today's Calculation Of Integral, 555

For $ \frac {1}{e} < t < 1$, find the minimum value of $ \int_0^1 |xe^{ \minus{} x} \minus{} tx|dx$.

2012 India National Olympiad, 6

Let $f : \mathbb{Z} \to \mathbb{Z}$ be a function satisfying $f(0) \ne 0$, $f(1) = 0$ and $(i) f(xy) + f(x)f(y) = f(x) + f(y)$ $(ii)\left(f(x-y) - f(0)\right ) f(x)f(y) = 0 $ for all $x,y \in \mathbb{Z}$, simultaneously. $(a)$ Find the set of all possible values of the function $f$. $(b)$ If $f(10) \ne 0$ and $f(2) = 0$, find the set of all integers $n$ such that $f(n) \ne 0$.

2012 Putnam, 5

Let $\mathbb{F}_p$ denote the field of integers modulo a prime $p,$ and let $n$ be a positive integer. Let $v$ be a fixed vector in $\mathbb{F}_p^n,$ let $M$ be an $n\times n$ matrix with entries in $\mathbb{F}_p,$ and define $G:\mathbb{F}_p^n\to \mathbb{F}_p^n$ by $G(x)=v+Mx.$ Let $G^{(k)}$ denote the $k$-fold composition of $G$ with itself, that is, $G^{(1)}(x)=G(x)$ and $G^{(k+1)}(x)=G(G^{(k)}(x)).$ Determine all pairs $p,n$ for which there exist $v$ and $M$ such that the $p^n$ vectors $G^{(k)}(0),$ $k=1,2,\dots,p^n$ are distinct.

1991 Arnold's Trivium, 87

Find the derivatives of the lengths of the semiaxes of the ellipsoid $x^2 + y^2 + z^2 + xy + yz + zx = 1 + \epsilon xy$ with respect to $\epsilon$ at $\epsilon = 0$.

2005 Germany Team Selection Test, 2

For any positive integer $ n$, prove that there exists a polynomial $ P$ of degree $ n$ such that all coeffients of this polynomial $ P$ are integers, and such that the numbers $ P\left(0\right)$, $ P\left(1\right)$, $ P\left(2\right)$, ..., $ P\left(n\right)$ are pairwisely distinct powers of $ 2$.

2006 Iran Team Selection Test, 4

Let $x_1,x_2,\ldots,x_n$ be real numbers. Prove that \[ \sum_{i,j=1}^n |x_i+x_j|\geq n\sum_{i=1}^n |x_i| \]

2007 Romania National Olympiad, 2

Let $f: \mathbb{R}\to\mathbb{R}$ be a continuous function, and $a<b$ be two points in the image of $f$ (that is, there exists $x,y$ such that $f(x)=a$ and $f(y)=b$). Show that there is an interval $I$ such that $f(I)=[a,b]$.

2021 Serbia National Math Olympiad, 5

Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that for every $x,y\in\mathbb{R}$ the following equality holds: $$f(xf(y)+x^2+y)=f(x)f(y)+xf(x)+f(y).$$

2011 Peru IMO TST, 1

Let $\Bbb{Z}^+$ denote the set of positive integers. Find all functions $f:\Bbb{Z}^+\to \Bbb{Z}^+$ that satisfy the following condition: for each positive integer $n,$ there exists a positive integer $k$ such that $$\sum_{i=1}^k f_i(n)=kn,$$ where $f_1(n)=f(n)$ and $f_{i+1}(n)=f(f_i(n)),$ for $i\geq 1. $

1985 IMO Shortlist, 5

Let $D$ be the interior of the circle $C$ and let $A \in C$. Show that the function $f : D \to \mathbb R, f(M)=\frac{|MA|}{|MM'|}$ where $M' = AM \cap C$, is strictly convex; i.e., $f(P) <\frac{f(M_1)+f(M_2)}{2}, \forall M_1,M_2 \in D, M_1 \neq M_2$ where $P$ is the midpoint of the segment $M_1M_2.$

2024 Alborz Mathematical Olympiad, P2

Let $\mathbb{Z}$ be the set of integers. Find all functions $f : \mathbb{Z} \to \mathbb{Z}$ such that for all integers $a$ and $b$, we have: $$f(a^2+ab)+f(b^2+ab)=(a+b)f(a+b).$$ Proposed by Heidar Shushtari

2007 International Zhautykov Olympiad, 1

Does there exist a function $f: \mathbb{R}\rightarrow\mathbb{R}$ such that $f(x+f(y))=f(x)+\sin y$, for all reals $x,y$ ?

2019-2020 Fall SDPC, 2

Tags: function
Consider a function $f: \mathbb{Z} \rightarrow \mathbb{Z}$. We call an integer $a$ [i]spanning[/i] if for all integers $b \neq a$, there exists a positive integer $k$ with $f^k(a)=b$. Find, with proof, the maximum possible number of [i]spanning[/i] numbers of $f$. Note: $\mathbb{Z}$ represents the set of all integers, so $f$ is a function from the set of integers to itself. $f^k(a)$ is defined as $f$ applied $k$ times to $a$.

2021 Iran Team Selection Test, 4

Assume $\Omega(n),\omega(n)$ be the biggest and smallest prime factors of $n$ respectively . Alireza and Amin decided to play a game. First Alireza chooses $1400$ polynomials with integer coefficients. Now Amin chooses $700$ of them, the set of polynomials of Alireza and Amin are $B,A$ respectively . Amin wins if for all $n$ we have : $$\max_{P \in A}(\Omega(P(n))) \ge \min_{P \in B}(\omega(P(n)))$$ Who has the winning strategy. Proposed by [i]Alireza Haghi[/i]

2015 Switzerland Team Selection Test, 7

Find all finite and non-empty sets $A$ of functions $f: \mathbb{R} \mapsto \mathbb{R}$ such that for all $f_1, f_2 \in A$, there exists $g \in A$ such that for all $x, y \in \mathbb{R}$ $$f_1 \left(f_2 (y)-x\right)+2x=g(x+y)$$

2010 Iran Team Selection Test, 12

Prove that for each natural number $m$, there is a natural number $N$ such that for each $b$ that $2\leq b\leq1389$ sum of digits of $N$ in base $b$ is larger than $m$.