This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2013 Turkey Junior National Olympiad, 1

Let $x, y, z$ be real numbers satisfying $x+y+z=0$ and $x^2+y^2+z^2=6$. Find the maximum value of \[ |(x-y)(y-z)(z-x) | \]

1994 APMO, 1

Let $f: \Bbb{R} \rightarrow \Bbb{R}$ be a function such that (i) For all $x,y \in \Bbb{R}$, \[ f(x)+f(y)+1 \geq f(x+y) \geq f(x)+f(y) \] (ii) For all $x \in [0,1)$, $f(0) \geq f(x)$, (iii) $-f(-1) = f(1) = 1$. Find all such functions $f$.

1989 IMO Shortlist, 10

Let $ g: \mathbb{C} \rightarrow \mathbb{C}$, $ \omega \in \mathbb{C}$, $ a \in \mathbb{C}$, $ \omega^3 \equal{} 1$, and $ \omega \ne 1$. Show that there is one and only one function $ f: \mathbb{C} \rightarrow \mathbb{C}$ such that \[ f(z) \plus{} f(\omega z \plus{} a) \equal{} g(z),z\in \mathbb{C} \]

2009 Vietnam National Olympiad, 4

Let $ a$, $ b$, $ c$ be three real numbers. For each positive integer number $ n$, $ a^n \plus{} b^n \plus{} c^n$ is an integer number. Prove that there exist three integers $ p$, $ q$, $ r$ such that $ a$, $ b$, $ c$ are the roots of the equation $ x^3 \plus{} px^2 \plus{} qx \plus{} r \equal{} 0$.

2004 Germany Team Selection Test, 2

Find all functions $f: \Bbb{R}_{0}^{+}\rightarrow \Bbb{R}_{0}^{+}$ with the following properties: (a) We have $f\left( xf\left( y\right) \right) \cdot f\left( y\right) =f\left( x+y\right)$ for all $x$ and $y$. (b) We have $f\left(2\right) = 0$. (c) For every $x$ with $0 < x < 2$, the value $f\left(x\right)$ doesn't equal $0$. [b]NOTE.[/b] We denote by $\Bbb{R}_{0}^{+}$ the set of all non-negative real numbers.

2000 Hungary-Israel Binational, 1

Let $A$ and $B$ be two subsets of $S = \{1, 2, . . . , 2000\}$ with $|A| \cdot |B| \geq 3999$. For a set $X$ , let $X-X$ denotes the set $\{s-t | s, t \in X, s \not = t\}$. Prove that $(A-A) \cap (B-B)$ is nonempty.

2012 Putnam, 6

Let $f(x,y)$ be a continuous, real-valued function on $\mathbb{R}^2.$ Suppose that, for every rectangular region $R$ of area $1,$ the double integral of $f(x,y)$ over $R$ equals $0.$ Must $f(x,y)$ be identically $0?$

1984 AIME Problems, 12

A function $f$ is defined for all real numbers and satisfies \[f(2 + x) = f(2 - x)\qquad\text{and}\qquad f(7 + x) = f(7 - x)\] for all real $x$. If $x = 0$ is a root of $f(x) = 0$, what is the least number of roots $f(x) = 0$ must have in the interval $-1000 \le x \le 1000$?

1993 APMO, 2

Find the total number of different integer values the function \[ f(x) = [x] + [2x] + [\frac{5x}{3}] + [3x] + [4x] \] takes for real numbers $x$ with $0 \leq x \leq 100$.

VMEO III 2006, 12.3

Prove that for all $n\in\mathbb{Z}^+$, we have \[ \sum\limits_{p=1}^n\sum\limits_{q=1}^p\left\lfloor -\frac{1+\sqrt{8q+(2p-1)^2}}{2}\right\rfloor =-\frac{n(n+1)(n+2)}{3} \]

2003 SNSB Admission, 1

Show that if a holomorphic function $ f:\mathbb{C}\longrightarrow\mathbb{C} $ has the property that the modulus of any of its derivatives (of any order) is everywhere dominated by $ 1, $ then $ |f(z)|\le e^{|\text{Im} (z)|} , $ for all complex numbers $ z. $

2010 Brazil Team Selection Test, 4

Let $f$ be any function that maps the set of real numbers into the set of real numbers. Prove that there exist real numbers $x$ and $y$ such that \[f\left(x-f(y)\right)>yf(x)+x\] [i]Proposed by Igor Voronovich, Belarus[/i]

2010 IMO Shortlist, 5

Denote by $\mathbb{Q}^+$ the set of all positive rational numbers. Determine all functions $f : \mathbb{Q}^+ \mapsto \mathbb{Q}^+$ which satisfy the following equation for all $x, y \in \mathbb{Q}^+:$ \[f\left( f(x)^2y \right) = x^3 f(xy).\] [i]Proposed by Thomas Huber, Switzerland[/i]

2011 Pre-Preparation Course Examination, 1

suppose that $S_{\mathbb N}$ is the set of all permutations of natural numbers. finite permutations are a subset of $S_{\mathbb N}$ that behave like the identity permutation from somewhere. in other words bijective functions like $\pi: \mathbb N \longrightarrow \mathbb N$ that only for finite natural numbers $i$, $\pi(i)\neq i$. prove that we cannot put probability measure that is countably additive on $\wp(S_{\mathbb N})$ (family of all the subsets of $S_{\mathbb N}$) that is invarient under finite permutations.

2011 Turkey Team Selection Test, 3

Let $p$ be a prime, $n$ be a positive integer, and let $\mathbb{Z}_{p^n}$ denote the set of congruence classes modulo $p^n.$ Determine the number of functions $f: \mathbb{Z}_{p^n} \to \mathbb{Z}_{p^n}$ satisfying the condition \[ f(a)+f(b) \equiv f(a+b+pab) \pmod{p^n} \] for all $a,b \in \mathbb{Z}_{p^n}.$

2007 Harvard-MIT Mathematics Tournament, 4

Find the real number $\alpha$ such that the curve $f(x)=e^x$ is tangent to the curve $g(x)=\alpha x^2$.

2006 IMC, 6

Find all sequences $a_{0}, a_{1},\ldots, a_{n}$ of real numbers such that $a_{n}\neq 0$, for which the following statement is true: If $f: \mathbb{R}\to\mathbb{R}$ is an $n$ times differentiable function and $x_{0}<x_{1}<\ldots <x_{n}$ are real numbers such that $f(x_{0})=f(x_{1})=\ldots =f(x_{n})=0$ then there is $h\in (x_{0}, x_{n})$ for which \[a_{0}f(h)+a_{1}f'(h)+\ldots+a_{n}f^{(n)}(h)=0.\]

2006 Taiwan TST Round 1, 1

Tags: algebra , function
Let $d,p,q$ be fixed positive integers, and $d$ is not a perfect square. $\mathbb{N}$ is the set of all positive integers, and $S=\{m+n\sqrt{d}|m,n \in \mathbb{N}\} \cup \{0\}$. Suppose the function $f: S \to S$ satisfies the following conditions for all $x,y \in S$: (i) $f((xy)^p)=(f(x)f(y))^p$ (ii)$f((x+y)^q)=(f(x)+f(y))^q$ Find the function $f$.

1988 AIME Problems, 2

Tags: function
For any positive integer $k$, let $f_1(k)$ denote the square of the sum of the digits of $k$. For $n \ge 2$, let $f_n(k) = f_1(f_{n - 1}(k))$. Find $f_{1988}(11)$.

2014 Saudi Arabia IMO TST, 4

Find all functions $f:\mathbb{N}\rightarrow\mathbb{N}$ such that \[f(n+1)>\frac{f(n)+f(f(n))}{2}\] for all $n\in\mathbb{N}$, where $\mathbb{N}$ is the set of strictly positive integers.

1951 Miklós Schweitzer, 2

Denote by $ \mathcal{H}$ a set of sequences $ S\equal{}\{s_n\}_{n\equal{}1}^{\infty}$ of real numbers having the following properties: (i) If $ S\equal{}\{s_n\}_{n\equal{}1}^{\infty}\in \mathcal{H}$, then $ S'\equal{}\{s_n\}_{n\equal{}2}^{\infty}\in \mathcal{H}$; (ii) If $ S\equal{}\{s_n\}_{n\equal{}1}^{\infty}\in \mathcal{H}$ and $ T\equal{}\{t_n\}_{n\equal{}1}^{\infty}$, then $ S\plus{}T\equal{}\{s_n\plus{}t_n\}_{n\equal{}1}^{\infty}\in \mathcal{H}$ and $ ST\equal{}\{s_nt_n\}_{n\equal{}1}^{\infty}\in \mathcal{H}$; (iii) $ \{\minus{}1,\minus{}1,\dots,\minus{}1,\dots\}\in \mathcal{H}$. A real valued function $ f(S)$ defined on $ \mathcal{H}$ is called a quasi-limit of $ S$ if it has the following properties: If $ S\equal{}{c,c,\dots,c,\dots}$, then $ f(S)\equal{}c$; If $ s_i\geq 0$, then $ f(S)\geq 0$; $ f(S\plus{}T)\equal{}f(S)\plus{}f(T)$; $ f(ST)\equal{}f(S)f(T)$, $ f(S')\equal{}f(S)$ Prove that for every $ S$, the quasi-limit $ f(S)$ is an accumulation point of $ S$.

2019 USEMO, 2

Let $\mathbb{Z}[x]$ denote the set of single-variable polynomials in $x$ with integer coefficients. Find all functions $\theta : \mathbb{Z}[x] \to \mathbb{Z}[x]$ (i.e. functions taking polynomials to polynomials) such that [list] [*] for any polynomials $p, q \in \mathbb{Z}[x]$, $\theta(p + q) = \theta(p) + \theta(q)$; [*] for any polynomial $p \in \mathbb{Z}[x]$, $p$ has an integer root if and only if $\theta(p)$ does. [/list] [i]Carl Schildkraut[/i]

2018 China Team Selection Test, 4

Let $k, M$ be positive integers such that $k-1$ is not squarefree. Prove that there exist a positive real $\alpha$, such that $\lfloor \alpha\cdot k^n \rfloor$ and $M$ are coprime for any positive integer $n$.

2023 District Olympiad, P4

Consider the functions $f,g,h:\mathbb{R}_{\geqslant 0}\to\mathbb{R}_{\geqslant 0}$ and the binary operation $*:\mathbb{R}_{\geqslant 0}\times \mathbb{R}_{\geqslant 0}\to \mathbb{R}_{\geqslant 0}$ defined as \[x*y=f(x)+g(y)+h(x)\cdot|x-y|,\]for all $x,y\in\mathbb{R}_{\geqslant 0}$. Suppose that $(\mathbb{R}_{\geqslant 0},*)$ is a commutative monoid. Determine the functions $f,g,h$.

2005 USA Team Selection Test, 2

Let $A_{1}A_{2}A_{3}$ be an acute triangle, and let $O$ and $H$ be its circumcenter and orthocenter, respectively. For $1\leq i \leq 3$, points $P_{i}$ and $Q_{i}$ lie on lines $OA_{i}$ and $A_{i+1}A_{i+2}$ (where $A_{i+3}=A_{i}$), respectively, such that $OP_{i}HQ_{i}$ is a parallelogram. Prove that \[\frac{OQ_{1}}{OP_{1}}+\frac{OQ_{2}}{OP_{2}}+\frac{OQ_{3}}{OP_{3}}\geq 3.\]